{"title":"Grey wolf optimisation algorithm for solving distribution network reconfiguration considering distributed generators simultaneously","authors":"Harish Kumar Pujari, Mageshvaran Rudramoorthy","doi":"10.1080/14786451.2022.2134383","DOIUrl":null,"url":null,"abstract":"ABSTRACT This article represents an application of the grey wolf optimisation (GWO) algorithm to solve the most optimistic combinatorial problems for optimal distribution network reconfiguration (DNR) and allocation of distributed generators (DGs) in a system. In this work, a metaheuristics algorithm is utilised to minimise the active power losses (APL) and enhance the voltage profile. Various scenarios were considered in this context to compare the performance of the proposed algorithm under voltage and current capacity constraints. Furthermore, a detailed validation via comparison of the results is being carried out with other methods from the exhaustive literature. The proposed algorithm reduces the APL by 63.13%, 56.19%, and 34.27% with DNR in IEEE 33, 69 and 118-bus systems. Similarly, APL reduction by 69.61%, 82.09%, and 36.08% with DNR considering DGs simultaneously. The results show that the proposed algorithm is an effective and promising method to solve problems similar to this work.","PeriodicalId":14406,"journal":{"name":"International Journal of Sustainable Energy","volume":"41 1","pages":"2121 - 2149"},"PeriodicalIF":2.0000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14786451.2022.2134383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT This article represents an application of the grey wolf optimisation (GWO) algorithm to solve the most optimistic combinatorial problems for optimal distribution network reconfiguration (DNR) and allocation of distributed generators (DGs) in a system. In this work, a metaheuristics algorithm is utilised to minimise the active power losses (APL) and enhance the voltage profile. Various scenarios were considered in this context to compare the performance of the proposed algorithm under voltage and current capacity constraints. Furthermore, a detailed validation via comparison of the results is being carried out with other methods from the exhaustive literature. The proposed algorithm reduces the APL by 63.13%, 56.19%, and 34.27% with DNR in IEEE 33, 69 and 118-bus systems. Similarly, APL reduction by 69.61%, 82.09%, and 36.08% with DNR considering DGs simultaneously. The results show that the proposed algorithm is an effective and promising method to solve problems similar to this work.
期刊介绍:
Engineering and sustainable development are intrinsically linked. All capital plant and every consumable product depends on an engineering input through design, manufacture and operation, if not for the product itself then for the equipment required to process and transport the raw materials and the final product. Many aspects of sustainable development depend directly on appropriate and timely actions by engineers. Engineering is an extended process of analysis, synthesis, evaluation and execution and, therefore, it is argued that engineers must be involved from the outset of any proposal to develop sustainable solutions. Engineering embraces many disciplines and truly sustainable solutions are usually inter-disciplinary in nature.