C. Dominguez-Tagle, M. Collados, R. López, J. J. V. Cedillo, M. Esteves, O. Grassin, N. Vega, Á. Mato, J. Quintero, H. Rodriguez, S. Regalado, F. G. I. D. A. D. Canarias, D. Astrof́isica, U. L. Laguna, Leibniz-Institut fur Sonnenphysik
{"title":"First light of the Integral Field Unit of GRIS on the GREGOR solar telescope","authors":"C. Dominguez-Tagle, M. Collados, R. López, J. J. V. Cedillo, M. Esteves, O. Grassin, N. Vega, Á. Mato, J. Quintero, H. Rodriguez, S. Regalado, F. G. I. D. A. D. Canarias, D. Astrof́isica, U. L. Laguna, Leibniz-Institut fur Sonnenphysik","doi":"10.1142/S2251171722500143","DOIUrl":null,"url":null,"abstract":"An Integral Field Unit (IFU) based on image-slicers has been added to the GREGOR Infrared Spectrograph (GRIS). This upgrade to the instrument makes possible 2D spectropolarimetry in the near-infrared by simultaneously recording the full Stokes profiles of spectral lines (in a given spectral interval) at all the points in the field of view. It provides high-cadence spectropolarimetric observations at the instrument's high spatial resolution and high polarization sensitivity at the GREGOR solar telescope. The IFU is ideal for observing the polarized spectrum of fast-evolving solar features at high spatial and spectral resolutions. The high observing cadence opens the possibility of time-series observations. The analysis of observations to this level of accuracy is essential for understanding the complex dynamics and interactions of solar plasma and magnetic fields. The image slicer of the IFU has eight slices of width 100 micron, covering a total field of view of 6\"x 3\". It was designed and built within the framework of the European projects SOLARNET and GREST, as a prototype for future instruments of the European Solar Telescope (EST) and was integrated into GRIS. After two commissioning campaigns in 2017 and 2018, the IFU was finally installed at the end of September 2018 and offered to all observers who use the telescope.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2251171722500143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 8
Abstract
An Integral Field Unit (IFU) based on image-slicers has been added to the GREGOR Infrared Spectrograph (GRIS). This upgrade to the instrument makes possible 2D spectropolarimetry in the near-infrared by simultaneously recording the full Stokes profiles of spectral lines (in a given spectral interval) at all the points in the field of view. It provides high-cadence spectropolarimetric observations at the instrument's high spatial resolution and high polarization sensitivity at the GREGOR solar telescope. The IFU is ideal for observing the polarized spectrum of fast-evolving solar features at high spatial and spectral resolutions. The high observing cadence opens the possibility of time-series observations. The analysis of observations to this level of accuracy is essential for understanding the complex dynamics and interactions of solar plasma and magnetic fields. The image slicer of the IFU has eight slices of width 100 micron, covering a total field of view of 6"x 3". It was designed and built within the framework of the European projects SOLARNET and GREST, as a prototype for future instruments of the European Solar Telescope (EST) and was integrated into GRIS. After two commissioning campaigns in 2017 and 2018, the IFU was finally installed at the end of September 2018 and offered to all observers who use the telescope.
期刊介绍:
The Journal of Astronomical Instrumentation (JAI) publishes papers describing instruments and components being proposed, developed, under construction and in use. JAI also publishes papers that describe facility operations, lessons learned in design, construction, and operation, algorithms and their implementations, and techniques, including calibration, that are fundamental elements of instrumentation. The journal focuses on astronomical instrumentation topics in all wavebands (Radio to Gamma-Ray) and includes the disciplines of Heliophysics, Space Weather, Lunar and Planetary Science, Exoplanet Exploration, and Astroparticle Observation (cosmic rays, cosmic neutrinos, etc.). Concepts, designs, components, algorithms, integrated systems, operations, data archiving techniques and lessons learned applicable but not limited to the following platforms are pertinent to this journal. Example topics are listed below each platform, and it is recognized that many of these topics are relevant to multiple platforms. Relevant platforms include: Ground-based observatories[...] Stratospheric aircraft[...] Balloons and suborbital rockets[...] Space-based observatories and systems[...] Landers and rovers, and other planetary-based instrument concepts[...]