Dynamical versions of Hardy’s uncertainty principle: A survey

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Aingeru Fernández-Bertolin, E. Malinnikova
{"title":"Dynamical versions of Hardy’s uncertainty principle: A survey","authors":"Aingeru Fernández-Bertolin, E. Malinnikova","doi":"10.1090/bull/1729","DOIUrl":null,"url":null,"abstract":"The Hardy uncertainty principle says that no function is better localized together with its Fourier transform than the Gaussian. The textbook proof of the result, as well as one of the original proofs by Hardy, refers to the Phragmén–Lindelöf theorem. In this note we first describe the connection of the Hardy uncertainty to the Schrödinger equation, and give a new proof of Hardy’s result which is based on this connection and the Liouville theorem. The proof is related to the second proof of Hardy, which has been undeservedly forgotten. Then we survey the recent results on dynamical versions of Hardy’s theorem.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/bull/1729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 6

Abstract

The Hardy uncertainty principle says that no function is better localized together with its Fourier transform than the Gaussian. The textbook proof of the result, as well as one of the original proofs by Hardy, refers to the Phragmén–Lindelöf theorem. In this note we first describe the connection of the Hardy uncertainty to the Schrödinger equation, and give a new proof of Hardy’s result which is based on this connection and the Liouville theorem. The proof is related to the second proof of Hardy, which has been undeservedly forgotten. Then we survey the recent results on dynamical versions of Hardy’s theorem.
哈代测不准原理的动力学版本综述
哈代测不准原理说没有一个函数比高斯函数更适合与傅里叶变换一起定域。该结果的课本证明,以及哈代的原始证明之一,引用了Phragmén-Lindelöf定理。在这篇笔记中,我们首先描述了哈代不确定性与Schrödinger方程的联系,并根据这种联系和刘维尔定理给出了哈代结果的一个新的证明。这个证明与哈代的第二个证明有关,这个证明不应该被遗忘。然后回顾了哈代定理的动态版本的最新成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信