ON PNDP-MANIFOLD

A. Pigazzini, C. Ozel, P. Linker, S. Jafari
{"title":"ON PNDP-MANIFOLD","authors":"A. Pigazzini, C. Ozel, P. Linker, S. Jafari","doi":"10.33786/pjaa.2021.v08i01(i).011","DOIUrl":null,"url":null,"abstract":"We provide a possible way of constructing new kinds of manifolds which we will call Partially Negative Dimensional Product manifold (PNDP-manifold for short). In particular a PNDP-manifold is an Einstein warped product manifold of special kind, where the base-manifold $B$ is a Remannian (or pseudo-Riemannian) product-manifold $B=\\Pi_{i=1}^{q'}B_i \\times \\Pi_{i=(q'+1)}^{\\widetilde q} B_i$, with $\\Pi_{i=(q'+1)}^{\\widetilde q} B_i$ an Einstein-manifold, and the fiber-manifold $F$ is a derived-differential-manifold (i.e., $F$ is the form: smooth manifold ($\\mathbb{R}^d$)+ obstruction bundle, so it can admit negative dimension). Since the dimension of a PNDP-manifold is not related with the usual geometric concept of dimension, from the speculative and applicative point of view, we try to define this relation using the concept of desuspension to identify the PNDP with another kind of\"object\", introducing a new kind of hidden dimensions.","PeriodicalId":37079,"journal":{"name":"Poincare Journal of Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poincare Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33786/pjaa.2021.v08i01(i).011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We provide a possible way of constructing new kinds of manifolds which we will call Partially Negative Dimensional Product manifold (PNDP-manifold for short). In particular a PNDP-manifold is an Einstein warped product manifold of special kind, where the base-manifold $B$ is a Remannian (or pseudo-Riemannian) product-manifold $B=\Pi_{i=1}^{q'}B_i \times \Pi_{i=(q'+1)}^{\widetilde q} B_i$, with $\Pi_{i=(q'+1)}^{\widetilde q} B_i$ an Einstein-manifold, and the fiber-manifold $F$ is a derived-differential-manifold (i.e., $F$ is the form: smooth manifold ($\mathbb{R}^d$)+ obstruction bundle, so it can admit negative dimension). Since the dimension of a PNDP-manifold is not related with the usual geometric concept of dimension, from the speculative and applicative point of view, we try to define this relation using the concept of desuspension to identify the PNDP with another kind of"object", introducing a new kind of hidden dimensions.
关于PNDP-MANIFOLD
我们提供了一种构造新型流形的可能方法,我们称之为部分负维积流形(简称PNDP流形)。特别地,PNDP流形是一个特殊类型的爱因斯坦翘曲积流形,其中基流形$B$是一个Remanian(或伪黎曼)积流形$B=\Pi_{i=1}^{q'}B_i\times\Pi_{i=(q'+1)}^{\widetilder q}B_i$,其中$\Pi_{i=,纤维流形$F$是一个导出的微分流形(即$F$的形式是:光滑流形($\mathbb{R}^d$)+阻塞丛,因此它可以容许负维数)。由于PNDP流形的维数与通常的几何维数概念无关,因此从思辨和应用的角度出发,我们试图用去耗散的概念来定义这种关系,以识别PNDP与另一种“对象”,引入一种新的隐藏维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Poincare Journal of Analysis and Applications
Poincare Journal of Analysis and Applications Mathematics-Applied Mathematics
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信