Kernel Estimation of Mathai-Haubold Entropy and Residual Mathai-Haubold Entropy Functions under α-Mixing Dependence Condition

Q3 Business, Management and Accounting
R. Maya, M. Irshad
{"title":"Kernel Estimation of Mathai-Haubold Entropy and Residual Mathai-Haubold Entropy Functions under α-Mixing Dependence Condition","authors":"R. Maya, M. Irshad","doi":"10.1080/01966324.2021.1935366","DOIUrl":null,"url":null,"abstract":"Abstract Mathai and Haubold introduced a new generalized entropy namely Mathai-Haubold entropy and Dar and Al-Zahrani proposed the Mathai-Haubold entropy for the residual life time and called it as residual Mathai-Haubold entropy. In the present paper, we propose nonparametric estimators for the Mathai-Haubold entropy and the residual Mathai-Haubold entropy where the observations under consideration are exhibiting α-mixing (strong mixing) dependence condition. Asymptotic properties of the estimators are established under suitable regular conditions. A Monte Carlo simulation study is carried out to compare the performance of the estimators using the mean squared error. The methods are illustrated using a real data set.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"41 1","pages":"148 - 159"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2021.1935366","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2021.1935366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Mathai and Haubold introduced a new generalized entropy namely Mathai-Haubold entropy and Dar and Al-Zahrani proposed the Mathai-Haubold entropy for the residual life time and called it as residual Mathai-Haubold entropy. In the present paper, we propose nonparametric estimators for the Mathai-Haubold entropy and the residual Mathai-Haubold entropy where the observations under consideration are exhibiting α-mixing (strong mixing) dependence condition. Asymptotic properties of the estimators are established under suitable regular conditions. A Monte Carlo simulation study is carried out to compare the performance of the estimators using the mean squared error. The methods are illustrated using a real data set.
α-混合相关条件下Mathai-Haubold熵和残差Mathai-Haubold熵函数的核估计
摘要Mathai和Haubold引入了一种新的广义熵,即Mathai Haubold熵,Dar和Al-Zahrani提出了剩余寿命的Mathai Haobold熵,并称之为剩余Mathai Haub熵。在本文中,我们提出了Mathai-Haubold熵和残差Mathai-Houbold熵的非参数估计,其中所考虑的观测值表现出α-混合(强混合)依赖条件。在适当的正则条件下,建立了估计量的渐近性质。进行了蒙特卡罗模拟研究,以比较使用均方误差的估计器的性能。使用实际数据集对这些方法进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信