M. Kaup, D. Łozowicka, Karolina Baszak, W. Ślączka, A. Kalbarczyk-Jedynak
{"title":"Review of the Container Ship Loading Model – Cause Analysis of Cargo Damage and/or Loss","authors":"M. Kaup, D. Łozowicka, Karolina Baszak, W. Ślączka, A. Kalbarczyk-Jedynak","doi":"10.2478/pomr-2022-0041","DOIUrl":null,"url":null,"abstract":"Abstract As the maritime transport of containers continues to grow and container ships change in terms of design and construction, it is important to ensure the appropriate level of safety for this type of transport. Over the decades, the size and cargo capacity of container ships have been changing, and so have their manoeuvring restrictions and required stability criteria. It seems that changes in the regulations, technological development and increased stability requirements are not yielding satisfactory results – the causes of container ship accidents continue to show similar patterns. The present article refers to the problem of ensuring safety in sea container transport, with a particular focus on cargo processes. Its purpose is to determine cause-and-effect relations leading to the loss of containers at sea, and to develop a model of loading that could significantly raise the level of safety of container transport. The article provides a general description of threats to ships related to weather conditions, loading methods or stability limitations. A statistical analysis of the occurrence of damage and/or loss of cargo from container ships was carried out and the risk of cargo loss was assessed on the basis of data from 2015‒2019. A Pareto diagram was used for this purpose. The authors present the concept of the container ship loading model, which may contribute to increasing the safety of shipping in the future.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2022-0041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract As the maritime transport of containers continues to grow and container ships change in terms of design and construction, it is important to ensure the appropriate level of safety for this type of transport. Over the decades, the size and cargo capacity of container ships have been changing, and so have their manoeuvring restrictions and required stability criteria. It seems that changes in the regulations, technological development and increased stability requirements are not yielding satisfactory results – the causes of container ship accidents continue to show similar patterns. The present article refers to the problem of ensuring safety in sea container transport, with a particular focus on cargo processes. Its purpose is to determine cause-and-effect relations leading to the loss of containers at sea, and to develop a model of loading that could significantly raise the level of safety of container transport. The article provides a general description of threats to ships related to weather conditions, loading methods or stability limitations. A statistical analysis of the occurrence of damage and/or loss of cargo from container ships was carried out and the risk of cargo loss was assessed on the basis of data from 2015‒2019. A Pareto diagram was used for this purpose. The authors present the concept of the container ship loading model, which may contribute to increasing the safety of shipping in the future.