On gradient estimates for heat kernels

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Baptiste Devyver
{"title":"On gradient estimates for heat kernels","authors":"Baptiste Devyver","doi":"10.1080/03605302.2020.1857398","DOIUrl":null,"url":null,"abstract":"Abstract We study pointwise and Lp gradient estimates of the heat kernels of both the scalar Laplacian, as well as the Hodge Laplacian on k-forms, on manifolds that may have some amount of negative Ricci curvature, provided it is not too negative (in an integral sense) at infinity. Such heat kernel estimates have already been obtained by the author, together with Coulhon and Sikora, provided certain L 2-cohomology spaces are trivial. This is however a strong topological assumption, and it is desirable to weaken it. The main point of the current work is to investigate what happens when these L 2-cohomology spaces are non-trivial. We find that the answer depends on some Lq integrability properties of L 2-harmonic forms.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/03605302.2020.1857398","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2020.1857398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We study pointwise and Lp gradient estimates of the heat kernels of both the scalar Laplacian, as well as the Hodge Laplacian on k-forms, on manifolds that may have some amount of negative Ricci curvature, provided it is not too negative (in an integral sense) at infinity. Such heat kernel estimates have already been obtained by the author, together with Coulhon and Sikora, provided certain L 2-cohomology spaces are trivial. This is however a strong topological assumption, and it is desirable to weaken it. The main point of the current work is to investigate what happens when these L 2-cohomology spaces are non-trivial. We find that the answer depends on some Lq integrability properties of L 2-harmonic forms.
热核的梯度估计
我们研究了k型流形上的标量拉普拉斯算子和霍奇拉普拉斯算子的热核的点向和Lp梯度估计,这些流形可能有一定数量的负里奇曲率,只要它在无穷远处不是太负(在积分意义上)。这种热核估计已经由作者与Coulhon和Sikora在给定的l2 -上同调空间是平凡的条件下得到。然而,这是一个很强的拓扑假设,我们希望削弱它。当前工作的重点是研究当这些l2 -上同空间是非平凡的时会发生什么。我们发现答案取决于l2调和形式的一些Lq可积性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信