On algorithmic complexity of imprecise spanners

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Abolfazl Poureidi , Mohammad Farshi
{"title":"On algorithmic complexity of imprecise spanners","authors":"Abolfazl Poureidi ,&nbsp;Mohammad Farshi","doi":"10.1016/j.comgeo.2023.102051","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>t</mi><mo>&gt;</mo><mn>1</mn></math></span> be a real number. A geometric <em>t</em><span>-spanner is a geometric graph for a point set in </span><span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span><span> with straight line segments between vertices such that the ratio of the shortest-path distance between every pair of vertices in the graph (with Euclidean edge lengths) to their actual Euclidean distance is at most </span><em>t</em>.</p><p>An imprecise point set is modeled by a set <em>R</em> of regions in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. If one chooses a point inside each region of <em>R</em>, then the resulting point set is called a precise instance from <em>R</em>. An imprecise <em>t</em>-spanner for an imprecise point set <em>R</em> is a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>R</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> such that for each precise instance <em>S</em> from <em>R</em>, graph <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo>=</mo><mo>(</mo><mi>S</mi><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>S</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>S</mi></mrow></msub></math></span> is the set of edges corresponding to <em>E</em> and <em>S</em>, is a <em>t</em>-spanner.</p><p>In this paper, we show an imprecise point set <em>R</em> of <em>n</em> straight-line segments in the plane such that any imprecise <em>t</em>-spanner for <em>R</em> has <span><math><mi>Ω</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> edges. Then, we give an algorithm that computes an imprecise <em>t</em>-spanner for a set of <em>n</em><span> pairwise disjoint </span><em>d</em>-dimensional balls with arbitrary sizes. This imprecise <em>t</em>-spanner has <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>/</mo><msup><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> edges and can be computed in <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>/</mo><msup><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> time. Finally, we show that given an imprecise spanner, finding a precise instance such that its corresponding precise spanner has minimum dilation between all possible precise instances of the imprecise spanner is NP-hard, no matter if crossing edges are allowed or not.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000718","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let t>1 be a real number. A geometric t-spanner is a geometric graph for a point set in Rd with straight line segments between vertices such that the ratio of the shortest-path distance between every pair of vertices in the graph (with Euclidean edge lengths) to their actual Euclidean distance is at most t.

An imprecise point set is modeled by a set R of regions in Rd. If one chooses a point inside each region of R, then the resulting point set is called a precise instance from R. An imprecise t-spanner for an imprecise point set R is a graph G=(R,E) such that for each precise instance S from R, graph GS=(S,ES), where ES is the set of edges corresponding to E and S, is a t-spanner.

In this paper, we show an imprecise point set R of n straight-line segments in the plane such that any imprecise t-spanner for R has Ω(n2) edges. Then, we give an algorithm that computes an imprecise t-spanner for a set of n pairwise disjoint d-dimensional balls with arbitrary sizes. This imprecise t-spanner has O(n/(t1)d) edges and can be computed in O(nlogn/(t1)d) time. Finally, we show that given an imprecise spanner, finding a precise instance such that its corresponding precise spanner has minimum dilation between all possible precise instances of the imprecise spanner is NP-hard, no matter if crossing edges are allowed or not.

不精确扳手的算法复杂度
设t>1为实数。几何t形钳是Rd中点集的几何图,顶点之间有直线段,图中每对顶点之间的最短路径距离(具有欧几里得边长度)与实际欧几里得距离的比率不超过。一个不精确的点集由Rd中的区域集R来建模。如果在R的每个区域内选择一个点,对于不精确点集R的不精确t形扳手是一个图G=(R,E),使得对于来自R的每个精确实例S,图GS=(S,ES),其中ES是对应于E和S的边的集合,是一个t形扳手。本文给出了平面上n个直线段的不精确点集R,使得任意R的不精确t形扳手都有Ω(n2)条边。然后,我们给出了一种算法,用于计算任意大小的n对不相交的d维球的不精确t形扳手。这个不精确的t形扳手有O(n/(t−1)d)条边,可以在O(nlog n/(t−1)d)时间内计算出来。最后,我们证明了给定一个不精确扳手,无论是否允许交叉边,找到一个精确实例,使其对应的精确扳手在所有可能的不精确扳手的精确实例之间具有最小的膨胀是np困难的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信