{"title":"On algorithmic complexity of imprecise spanners","authors":"Abolfazl Poureidi , Mohammad Farshi","doi":"10.1016/j.comgeo.2023.102051","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>t</mi><mo>></mo><mn>1</mn></math></span> be a real number. A geometric <em>t</em><span>-spanner is a geometric graph for a point set in </span><span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span><span> with straight line segments between vertices such that the ratio of the shortest-path distance between every pair of vertices in the graph (with Euclidean edge lengths) to their actual Euclidean distance is at most </span><em>t</em>.</p><p>An imprecise point set is modeled by a set <em>R</em> of regions in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. If one chooses a point inside each region of <em>R</em>, then the resulting point set is called a precise instance from <em>R</em>. An imprecise <em>t</em>-spanner for an imprecise point set <em>R</em> is a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>R</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> such that for each precise instance <em>S</em> from <em>R</em>, graph <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo>=</mo><mo>(</mo><mi>S</mi><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>S</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>S</mi></mrow></msub></math></span> is the set of edges corresponding to <em>E</em> and <em>S</em>, is a <em>t</em>-spanner.</p><p>In this paper, we show an imprecise point set <em>R</em> of <em>n</em> straight-line segments in the plane such that any imprecise <em>t</em>-spanner for <em>R</em> has <span><math><mi>Ω</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> edges. Then, we give an algorithm that computes an imprecise <em>t</em>-spanner for a set of <em>n</em><span> pairwise disjoint </span><em>d</em>-dimensional balls with arbitrary sizes. This imprecise <em>t</em>-spanner has <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>/</mo><msup><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> edges and can be computed in <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>/</mo><msup><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> time. Finally, we show that given an imprecise spanner, finding a precise instance such that its corresponding precise spanner has minimum dilation between all possible precise instances of the imprecise spanner is NP-hard, no matter if crossing edges are allowed or not.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000718","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a real number. A geometric t-spanner is a geometric graph for a point set in with straight line segments between vertices such that the ratio of the shortest-path distance between every pair of vertices in the graph (with Euclidean edge lengths) to their actual Euclidean distance is at most t.
An imprecise point set is modeled by a set R of regions in . If one chooses a point inside each region of R, then the resulting point set is called a precise instance from R. An imprecise t-spanner for an imprecise point set R is a graph such that for each precise instance S from R, graph , where is the set of edges corresponding to E and S, is a t-spanner.
In this paper, we show an imprecise point set R of n straight-line segments in the plane such that any imprecise t-spanner for R has edges. Then, we give an algorithm that computes an imprecise t-spanner for a set of n pairwise disjoint d-dimensional balls with arbitrary sizes. This imprecise t-spanner has edges and can be computed in time. Finally, we show that given an imprecise spanner, finding a precise instance such that its corresponding precise spanner has minimum dilation between all possible precise instances of the imprecise spanner is NP-hard, no matter if crossing edges are allowed or not.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.