Downstream Distribution and Postdepositional Mobilization of Cadmium in Alluvial Soils

IF 2.1 Q3 SOIL SCIENCE
Valerie Cappuyns
{"title":"Downstream Distribution and Postdepositional Mobilization of Cadmium in Alluvial Soils","authors":"Valerie Cappuyns","doi":"10.1155/2023/9915654","DOIUrl":null,"url":null,"abstract":"The geochemical signature in alluvial soils is a witness of human activities that took place in a river catchment. Sampling of alluvial soils at depth, in combination with information on sedimentological history and age of samples, may even allow to reconstruct the pollution history of the river basin. In the present study, data on alluvial soils contaminated by a major pollution source were analyzed, with special attention for these soils as an archive for information on the pollution history of a river/river catchment, and on the postdepositional downward migration of metal(loid)s in the alluvial soils. Besides the lateral variation of soil properties and metal(loid) concentrations in the alluvial soils, the vertical distribution of metal(loid)s in soil profiles, as well as the evolution of soil composition in relation to the distance from the river, was addressed. The postdepositional mobilization of Cd was evaluated in a fine-scale sampled alluvial soil core, by comparing data from 137Cs dating with data about the Cd emissions through time and by using leaching tests to calculate the downward migration of Cd. A substantial amount of Cd could leach from superficial to deeper soil layers. Therefore, the low-resolution (cm-scale) sampling of the alluvial soil was not reliable to reconstruct the pollution history of the river catchment, because the elevated chloride-concentrations in the river water increased the downward leaching of Cd through the formation of chloro-complexes. Moreover, the variability in flooding and sedimentation regimes along the river resulted in a heterogeneous composition of the alluvial soils, allowing very large differences in metal(loid) concentrations in places only a few meters apart.","PeriodicalId":38438,"journal":{"name":"Applied and Environmental Soil Science","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/9915654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The geochemical signature in alluvial soils is a witness of human activities that took place in a river catchment. Sampling of alluvial soils at depth, in combination with information on sedimentological history and age of samples, may even allow to reconstruct the pollution history of the river basin. In the present study, data on alluvial soils contaminated by a major pollution source were analyzed, with special attention for these soils as an archive for information on the pollution history of a river/river catchment, and on the postdepositional downward migration of metal(loid)s in the alluvial soils. Besides the lateral variation of soil properties and metal(loid) concentrations in the alluvial soils, the vertical distribution of metal(loid)s in soil profiles, as well as the evolution of soil composition in relation to the distance from the river, was addressed. The postdepositional mobilization of Cd was evaluated in a fine-scale sampled alluvial soil core, by comparing data from 137Cs dating with data about the Cd emissions through time and by using leaching tests to calculate the downward migration of Cd. A substantial amount of Cd could leach from superficial to deeper soil layers. Therefore, the low-resolution (cm-scale) sampling of the alluvial soil was not reliable to reconstruct the pollution history of the river catchment, because the elevated chloride-concentrations in the river water increased the downward leaching of Cd through the formation of chloro-complexes. Moreover, the variability in flooding and sedimentation regimes along the river resulted in a heterogeneous composition of the alluvial soils, allowing very large differences in metal(loid) concentrations in places only a few meters apart.
冲积土中镉的下游分布和沉积后迁移
冲积土的地球化学特征是人类在河流流域活动的见证。对深层冲积土进行采样,结合沉积学历史和样本年龄信息,甚至可以重建流域的污染历史。在本研究中,分析了被主要污染源污染的冲积土的数据,特别注意将这些土壤作为河流/河流流域污染历史信息的档案,以及冲积土中金属(类)沉积后向下迁移的信息。除了冲积土中土壤性质和金属(多倍体)浓度的横向变化外,还讨论了金属(多倍体)在土壤剖面中的垂直分布,以及土壤成分随离河距离的演变。通过将137Cs测年数据与Cd随时间排放的数据进行比较,并通过浸出试验计算Cd的向下迁移,在细尺度取样的冲积土芯中评估了Cd的沉积后迁移。大量Cd可以从表层向深层浸出。因此,冲积土的低分辨率(cm尺度)采样对于重建河流流域的污染历史是不可靠的,因为河水中氯化物浓度的升高通过氯络合物的形成增加了镉的向下浸出。此外,河流沿岸洪水和沉积状态的变化导致冲积土的组成不均匀,使得相距仅几米的地方的金属(类)浓度存在很大差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Environmental Soil Science
Applied and Environmental Soil Science Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.00
自引率
4.50%
发文量
55
审稿时长
18 weeks
期刊介绍: Applied and Environmental Soil Science is a peer-reviewed, Open Access journal that publishes research and review articles in the field of soil science. Its coverage reflects the multidisciplinary nature of soil science, and focuses on studies that take account of the dynamics and spatial heterogeneity of processes in soil. Basic studies of the physical, chemical, biochemical, and biological properties of soil, innovations in soil analysis, and the development of statistical tools will be published. Among the major environmental issues addressed will be: -Pollution by trace elements and nutrients in excess- Climate change and global warming- Soil stability and erosion- Water quality- Quality of agricultural crops- Plant nutrition- Soil hydrology- Biodiversity of soils- Role of micro- and mesofauna in soil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信