Note on geodesics of cotangent bundle with Berger-type deformed Sasaki metric over K\"ahlerian manifold

Q3 Mathematics
A. Zagane
{"title":"Note on geodesics of cotangent bundle with Berger-type deformed Sasaki metric over K\\\"ahlerian manifold","authors":"A. Zagane","doi":"10.46298/cm.11025","DOIUrl":null,"url":null,"abstract":"In this paper, first, we introduce the Berger-type deformed Sasaki metric on\nthe cotangent bundle $T^{\\ast}M$ over a K\\\"{a}hlerian manifold $(M^{2m}, J, g)$\nand investigate the Levi-Civita connection of this metric. Secondly, we present\nthe unit cotangent bundle equipped with Berger-type deformed Sasaki metric, and\nwe investigate the Levi-Civita connection. Finally, we study the geodesics on\nthe cotangent bundle and on unit cotangent bundle with respect to the\nBerger-type deformed Sasaki metric.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.11025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, first, we introduce the Berger-type deformed Sasaki metric on the cotangent bundle $T^{\ast}M$ over a K\"{a}hlerian manifold $(M^{2m}, J, g)$ and investigate the Levi-Civita connection of this metric. Secondly, we present the unit cotangent bundle equipped with Berger-type deformed Sasaki metric, and we investigate the Levi-Civita connection. Finally, we study the geodesics on the cotangent bundle and on unit cotangent bundle with respect to the Berger-type deformed Sasaki metric.
关于K\“ahlerian流形上Berger型变形Sasaki度量余切丛的测地线的注记
在本文中,首先,我们引入了K\上余切丛$T^{\ ast}M$上的Berger型变形Sasaki度量{a}hlerian流形$(M^{2m},J,g)$,并研究该度量的Levi-Civita连接。其次,我们给出了带有Berger型变形Sasaki度量的单位余切丛,并研究了Levi-Civita连接。最后,我们研究了关于Berger型变形Sasaki度量的余切丛和单位余切丛上的测地线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信