Prime numbers in two bases

IF 2.3 1区 数学 Q1 MATHEMATICS
M. Drmota, C. Mauduit, J. Rivat
{"title":"Prime numbers in two bases","authors":"M. Drmota, C. Mauduit, J. Rivat","doi":"10.1215/00127094-2019-0083","DOIUrl":null,"url":null,"abstract":"If q1 and q2 are two coprime bases, f (resp. g) a strongly q1-multiplicative (resp. strongly q2-multiplicative) function of modulus 1 and θ a real number, we estimate the sums ∑ n≤x Λ(n)f(n)g(n) exp(2iπθn) (and ∑ n≤x μ(n)f(n)g(n) exp(2iπθn)), where Λ denotes the von Mangoldt function (and μ the Möbius function). The goal of this work is to introduce a new approach to study these sums involving simultaneously two different bases combining Fourier analysis, Diophantine approximation and combinatorial arguments. We deduce from these estimates a Prime Number Theorem (and Möbius orthogonality) for sequences of integers with digit properties in two coprime bases.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":"169 1","pages":"1809-1876"},"PeriodicalIF":2.3000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2019-0083","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

If q1 and q2 are two coprime bases, f (resp. g) a strongly q1-multiplicative (resp. strongly q2-multiplicative) function of modulus 1 and θ a real number, we estimate the sums ∑ n≤x Λ(n)f(n)g(n) exp(2iπθn) (and ∑ n≤x μ(n)f(n)g(n) exp(2iπθn)), where Λ denotes the von Mangoldt function (and μ the Möbius function). The goal of this work is to introduce a new approach to study these sums involving simultaneously two different bases combining Fourier analysis, Diophantine approximation and combinatorial arguments. We deduce from these estimates a Prime Number Theorem (and Möbius orthogonality) for sequences of integers with digit properties in two coprime bases.
两进制的质数
如果q1和q2是两个素数碱,f (p。G)强q1乘法(相对于;我们估计∑n≤x Λ(n)f(n)g(n) exp(2iπθn)和∑n≤x μ(n)f(n)g(n) exp(2iπθn))的和,其中Λ表示von Mangoldt函数(μ为Möbius函数)。这项工作的目标是引入一种新的方法来研究这些同时涉及两种不同基的和,结合傅里叶分析,丢番图近似和组合论证。我们从这些估计中推导出两个素数基中具有数字性质的整数序列的素数定理(和Möbius正交性)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信