{"title":"Prime numbers in two bases","authors":"M. Drmota, C. Mauduit, J. Rivat","doi":"10.1215/00127094-2019-0083","DOIUrl":null,"url":null,"abstract":"If q1 and q2 are two coprime bases, f (resp. g) a strongly q1-multiplicative (resp. strongly q2-multiplicative) function of modulus 1 and θ a real number, we estimate the sums ∑ n≤x Λ(n)f(n)g(n) exp(2iπθn) (and ∑ n≤x μ(n)f(n)g(n) exp(2iπθn)), where Λ denotes the von Mangoldt function (and μ the Möbius function). The goal of this work is to introduce a new approach to study these sums involving simultaneously two different bases combining Fourier analysis, Diophantine approximation and combinatorial arguments. We deduce from these estimates a Prime Number Theorem (and Möbius orthogonality) for sequences of integers with digit properties in two coprime bases.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2019-0083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 7
Abstract
If q1 and q2 are two coprime bases, f (resp. g) a strongly q1-multiplicative (resp. strongly q2-multiplicative) function of modulus 1 and θ a real number, we estimate the sums ∑ n≤x Λ(n)f(n)g(n) exp(2iπθn) (and ∑ n≤x μ(n)f(n)g(n) exp(2iπθn)), where Λ denotes the von Mangoldt function (and μ the Möbius function). The goal of this work is to introduce a new approach to study these sums involving simultaneously two different bases combining Fourier analysis, Diophantine approximation and combinatorial arguments. We deduce from these estimates a Prime Number Theorem (and Möbius orthogonality) for sequences of integers with digit properties in two coprime bases.