{"title":"Acoustic Path Filtering for Improved Multimode Total Focusing Method Inspection","authors":"B. Lepage, Guillaume Painchard-April","doi":"10.32548/2023.me-04279","DOIUrl":null,"url":null,"abstract":"Total focusing method (TFM) is an ultrasonic testing (UT) technique that provides nondestructive testing (NDT) inspectors with new imaging modes, enabling more accurate detection, sizing, and representation of challenging defects. While TFM may offer convenient, nearly true-to-geometry imagery as the inspection result, it is often detrimentally affected by mode conversion artifacts. Current standards, such as ASME Section V, place the burden on the inspector to explain the origins of those artifacts, impacting the productivity and reliability of the inspection. A method enabling direct control of the ultrasonic wave propagation modes—that is, transverse wave (T) or longitudinal wave (L)—through each interface of the acoustic path is proposed and evaluated in this paper. This control is achieved after the full matrix capture acquisition by modulating, according to the desired propagation mode, the gain applied on the individual paths within the summation process. This leads to the formation of a Path-Filtered Total Focusing Method image. Empirical results on various use cases show considerable improvement of the signal-to-noise ratio through the almost complete elimination of signals originating from undesired paths.","PeriodicalId":49876,"journal":{"name":"Materials Evaluation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32548/2023.me-04279","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 1
Abstract
Total focusing method (TFM) is an ultrasonic testing (UT) technique that provides nondestructive testing (NDT) inspectors with new imaging modes, enabling more accurate detection, sizing, and representation of challenging defects. While TFM may offer convenient, nearly true-to-geometry imagery as the inspection result, it is often detrimentally affected by mode conversion artifacts. Current standards, such as ASME Section V, place the burden on the inspector to explain the origins of those artifacts, impacting the productivity and reliability of the inspection. A method enabling direct control of the ultrasonic wave propagation modes—that is, transverse wave (T) or longitudinal wave (L)—through each interface of the acoustic path is proposed and evaluated in this paper. This control is achieved after the full matrix capture acquisition by modulating, according to the desired propagation mode, the gain applied on the individual paths within the summation process. This leads to the formation of a Path-Filtered Total Focusing Method image. Empirical results on various use cases show considerable improvement of the signal-to-noise ratio through the almost complete elimination of signals originating from undesired paths.
期刊介绍:
Materials Evaluation publishes articles, news and features intended to increase the NDT practitioner’s knowledge of the science and technology involved in the field, bringing informative articles to the NDT public while highlighting the ongoing efforts of ASNT to fulfill its mission. M.E. is a peer-reviewed journal, relying on technicians and researchers to help grow and educate its members by providing relevant, cutting-edge and exclusive content containing technical details and discussions. The only periodical of its kind, M.E. is circulated to members and nonmember paid subscribers. The magazine is truly international in scope, with readers in over 90 nations. The journal’s history and archive reaches back to the earliest formative days of the Society.