{"title":"On the pointwise Lyapunov exponent of holomorphic maps","authors":"I. Weinstein","doi":"10.4064/fm847-1-2020","DOIUrl":null,"url":null,"abstract":"We prove that for any holomorphic map, and any bounded orbit which does not accumulate to a singular set or to an attracting cycle, its lower Lyapunov exponent is non-negative. The same result holds for unbounded orbits, for maps with a bounded singular set. Furthermore, the orbit may accumulate to infinity or to a singular set, as long as it is slow enough.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm847-1-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that for any holomorphic map, and any bounded orbit which does not accumulate to a singular set or to an attracting cycle, its lower Lyapunov exponent is non-negative. The same result holds for unbounded orbits, for maps with a bounded singular set. Furthermore, the orbit may accumulate to infinity or to a singular set, as long as it is slow enough.