Y. Boutillara, L. Richelet, L. F. Velasco, P. Lodewyckx
{"title":"Factors Influencing the Kinetics of Water Vapour Adsorption on Activated Carbons","authors":"Y. Boutillara, L. Richelet, L. F. Velasco, P. Lodewyckx","doi":"10.18321/ectj1102","DOIUrl":null,"url":null,"abstract":"The performance of porous carbon materials as sorbents is often compromised by the presence of humidity. Studying the kinetics of water vapour adsorption on activated carbons will undeniably help to overcome this issue. This has been approached in this work by evaluating the influence of several operational factors on the dynamic adsorption of water vapour in these materials. Specifically, different carbon types, particle sizes, air flows and ambient conditions (temperature and relative humidity (RH)) were systematically investigated. The impact of each isolated parameter on both the maximum water uptake and the uptake rate was analyzed by fitting the experimental data to the Linear Driving Force (LDF) kinetic model. The results show that except for the particle size, the studied variables play a role in the water sorption kinetics, although to a different extent. It was also confirmed that the LDF model can adequately describe the kinetics of water vapour adsorption independently of the experimental conditions. Finally, the complete water vapour adsorption process can be described by this model, obtaining a different value of the kinetic constant for the sequential stages, involving different adsorption mechanisms.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemico-Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18321/ectj1102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The performance of porous carbon materials as sorbents is often compromised by the presence of humidity. Studying the kinetics of water vapour adsorption on activated carbons will undeniably help to overcome this issue. This has been approached in this work by evaluating the influence of several operational factors on the dynamic adsorption of water vapour in these materials. Specifically, different carbon types, particle sizes, air flows and ambient conditions (temperature and relative humidity (RH)) were systematically investigated. The impact of each isolated parameter on both the maximum water uptake and the uptake rate was analyzed by fitting the experimental data to the Linear Driving Force (LDF) kinetic model. The results show that except for the particle size, the studied variables play a role in the water sorption kinetics, although to a different extent. It was also confirmed that the LDF model can adequately describe the kinetics of water vapour adsorption independently of the experimental conditions. Finally, the complete water vapour adsorption process can be described by this model, obtaining a different value of the kinetic constant for the sequential stages, involving different adsorption mechanisms.
期刊介绍:
The journal is designed for publication of experimental and theoretical investigation results in the field of chemistry and chemical technology. Among priority fields that emphasized by chemical science are as follows: advanced materials and chemical technologies, current issues of organic synthesis and chemistry of natural compounds, physical chemistry, chemical physics, electro-photo-radiative-plasma chemistry, colloids, nanotechnologies, catalysis and surface-active materials, polymers, biochemistry.