Factors Influencing the Kinetics of Water Vapour Adsorption on Activated Carbons

IF 0.5 Q4 CHEMISTRY, MULTIDISCIPLINARY
Y. Boutillara, L. Richelet, L. F. Velasco, P. Lodewyckx
{"title":"Factors Influencing the Kinetics of Water Vapour Adsorption on Activated Carbons","authors":"Y. Boutillara, L. Richelet, L. F. Velasco, P. Lodewyckx","doi":"10.18321/ectj1102","DOIUrl":null,"url":null,"abstract":"The performance of porous carbon materials as sorbents is often compromised by the presence of humidity. Studying the kinetics of water vapour adsorption on activated carbons will undeniably help to overcome this issue. This has been approached in this work by evaluating the influence of several operational factors on the dynamic adsorption of water vapour in these materials. Specifically, different carbon types, particle sizes, air flows and ambient conditions (temperature and relative humidity (RH)) were systematically investigated. The impact of each isolated parameter on both the maximum water uptake and the uptake rate was analyzed by fitting the experimental data to the Linear Driving Force (LDF) kinetic model. The results show that except for the particle size, the studied variables play a role in the water sorption kinetics, although to a different extent. It was also confirmed that the LDF model can adequately describe the kinetics of water vapour adsorption independently of the experimental conditions. Finally, the complete water vapour adsorption process can be described by this model, obtaining a different value of the kinetic constant for the sequential stages, involving different adsorption mechanisms.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemico-Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18321/ectj1102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of porous carbon materials as sorbents is often compromised by the presence of humidity. Studying the kinetics of water vapour adsorption on activated carbons will undeniably help to overcome this issue. This has been approached in this work by evaluating the influence of several operational factors on the dynamic adsorption of water vapour in these materials. Specifically, different carbon types, particle sizes, air flows and ambient conditions (temperature and relative humidity (RH)) were systematically investigated. The impact of each isolated parameter on both the maximum water uptake and the uptake rate was analyzed by fitting the experimental data to the Linear Driving Force (LDF) kinetic model. The results show that except for the particle size, the studied variables play a role in the water sorption kinetics, although to a different extent. It was also confirmed that the LDF model can adequately describe the kinetics of water vapour adsorption independently of the experimental conditions. Finally, the complete water vapour adsorption process can be described by this model, obtaining a different value of the kinetic constant for the sequential stages, involving different adsorption mechanisms.
影响活性炭吸附水蒸气动力学的因素
多孔碳材料作为吸附剂的性能经常受到湿度的影响。研究水蒸气在活性炭上的吸附动力学无疑有助于克服这个问题。这项工作通过评估几个操作因素对水蒸气在这些材料中的动态吸附的影响来实现。具体而言,系统地研究了不同的碳类型、颗粒尺寸、空气流量和环境条件(温度和相对湿度(RH))。通过将实验数据拟合到线性驱动力(LDF)动力学模型,分析了每个独立参数对最大吸水率和吸水率的影响。结果表明,除颗粒大小外,所研究的变量在吸水动力学中也起作用,尽管程度不同。还证实了LDF模型可以充分描述水蒸气吸附的动力学,而与实验条件无关。最后,该模型可以描述完整的水蒸气吸附过程,获得不同阶段的动力学常数值,涉及不同的吸附机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Eurasian Chemico-Technological Journal
Eurasian Chemico-Technological Journal CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
1.10
自引率
20.00%
发文量
6
审稿时长
20 weeks
期刊介绍: The journal is designed for publication of experimental and theoretical investigation results in the field of chemistry and chemical technology. Among priority fields that emphasized by chemical science are as follows: advanced materials and chemical technologies, current issues of organic synthesis and chemistry of natural compounds, physical chemistry, chemical physics, electro-photo-radiative-plasma chemistry, colloids, nanotechnologies, catalysis and surface-active materials, polymers, biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信