Finding the forest in the trees: Enabling performance optimization on heterogeneous architectures through data science analysis of ensemble performance data
IF 3.5 3区 计算机科学Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
{"title":"Finding the forest in the trees: Enabling performance optimization on heterogeneous architectures through data science analysis of ensemble performance data","authors":"Olga Pearce, S. Brink","doi":"10.1177/10943420231175687","DOIUrl":null,"url":null,"abstract":"In this work, we develop novel data science methodologies for ensemble performance data that have the potential to uncover orders of magnitude of performance that is unknowingly being left on the table. Building on years of successful performance tool design and tool integration into million-line codes at Lawrence Livermore National Laboratory (Caliper (Boehme et al. 2016), Hatchet (Bhatele et al. 2019; Brink et al. 2020))—successes highlighted as key deliverables in meeting LLNL’s L1 and L2 milestones (Rieben and Weiss 2020)—we design a data science methodology for integrating multi-dimensional, multi-scale, multi-architecture, and multi-tool performance data, and provide data analytics and interactive visualization capabilities for further analysis and exploration of the data. Our work provides developers with a comprehensive multi-dimensional performance landscape, enabling enhanced capabilities for pinpointing performance bottlenecks on emerging hardware platforms composed of heterogeneous elements.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"37 1","pages":"434 - 441"},"PeriodicalIF":3.5000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420231175687","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we develop novel data science methodologies for ensemble performance data that have the potential to uncover orders of magnitude of performance that is unknowingly being left on the table. Building on years of successful performance tool design and tool integration into million-line codes at Lawrence Livermore National Laboratory (Caliper (Boehme et al. 2016), Hatchet (Bhatele et al. 2019; Brink et al. 2020))—successes highlighted as key deliverables in meeting LLNL’s L1 and L2 milestones (Rieben and Weiss 2020)—we design a data science methodology for integrating multi-dimensional, multi-scale, multi-architecture, and multi-tool performance data, and provide data analytics and interactive visualization capabilities for further analysis and exploration of the data. Our work provides developers with a comprehensive multi-dimensional performance landscape, enabling enhanced capabilities for pinpointing performance bottlenecks on emerging hardware platforms composed of heterogeneous elements.
期刊介绍:
With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.