{"title":"Cauchy Relations in Linear Elasticity: Algebraic and Physics Aspects","authors":"Yakov Itin","doi":"10.1007/s10659-023-10035-8","DOIUrl":null,"url":null,"abstract":"<div><p>The Cauchy relations distinguish between rari- and multi-constant linear elasticity theories. These relations are treated in this paper in a form that is invariant under two groups of transformations: indices permutation and general linear transformations of the basis. The irreducible decomposition induced by the permutation group is outlined. The Cauchy relations are then formulated as a requirement of nullification of an invariant subspace. A successive decomposition under rotation group allows to define the partial Cauchy relations and two types of elastic materials. We explore several applications of the full and partial Cauchy relations in physics of materials. The structure’s deviation from the basic physical assumptions of Cauchy’s model is defined in an invariant form. The Cauchy and non-Cauchy contributions to Hooke’s law and elasticity energy are explained. We identify wave velocities and polarization vectors that are independent of the non-Cauchy part for acoustic wave propagation. Several bounds are derived for the elasticity invariant parameters.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-023-10035-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Cauchy relations distinguish between rari- and multi-constant linear elasticity theories. These relations are treated in this paper in a form that is invariant under two groups of transformations: indices permutation and general linear transformations of the basis. The irreducible decomposition induced by the permutation group is outlined. The Cauchy relations are then formulated as a requirement of nullification of an invariant subspace. A successive decomposition under rotation group allows to define the partial Cauchy relations and two types of elastic materials. We explore several applications of the full and partial Cauchy relations in physics of materials. The structure’s deviation from the basic physical assumptions of Cauchy’s model is defined in an invariant form. The Cauchy and non-Cauchy contributions to Hooke’s law and elasticity energy are explained. We identify wave velocities and polarization vectors that are independent of the non-Cauchy part for acoustic wave propagation. Several bounds are derived for the elasticity invariant parameters.
期刊介绍:
The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.