{"title":"A critical analysis of turbulence modulation in particulate flow systems: a review of the experimental studies","authors":"M. M. Hoque, J. Joshi, G. Evans, S. Mitra","doi":"10.1515/revce-2022-0068","DOIUrl":null,"url":null,"abstract":"Abstract In multiphase particulate systems, the turbulence of the continuous phase (gas or liquid) is modulated due to interactions between the continuous phase and the suspended particles. Such phenomena are non-trivial in the essence that addition of a dispersed phase to a turbulent flow complicates the existing flow patterns depending on the physical properties of the particles leading to either augmentation or attenuation of continuous phase turbulence. In the present study, this aspect has been comprehensively analysed based on the available experimental data obtained from the well-studied turbulent flow systems such as channel and pipes, free jets and grids. Relevant non-dimensional parameters such as particle diameter to integral length scale ratio, Stokes number, particle volume fraction, particle momentum number, and particle Reynolds number have been utilised to characterise the reported turbulence modulation behavior. Some limitations of these commonly used dimensionless parameters to characterise turbulence modulation are discussed, and possible improvements are suggested.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/revce-2022-0068","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract In multiphase particulate systems, the turbulence of the continuous phase (gas or liquid) is modulated due to interactions between the continuous phase and the suspended particles. Such phenomena are non-trivial in the essence that addition of a dispersed phase to a turbulent flow complicates the existing flow patterns depending on the physical properties of the particles leading to either augmentation or attenuation of continuous phase turbulence. In the present study, this aspect has been comprehensively analysed based on the available experimental data obtained from the well-studied turbulent flow systems such as channel and pipes, free jets and grids. Relevant non-dimensional parameters such as particle diameter to integral length scale ratio, Stokes number, particle volume fraction, particle momentum number, and particle Reynolds number have been utilised to characterise the reported turbulence modulation behavior. Some limitations of these commonly used dimensionless parameters to characterise turbulence modulation are discussed, and possible improvements are suggested.
期刊介绍:
Reviews in Chemical Engineering publishes authoritative review articles on all aspects of the broad field of chemical engineering and applied chemistry. Its aim is to develop new insights and understanding and to promote interest and research activity in chemical engineering, as well as the application of new developments in these areas. The bimonthly journal publishes peer-reviewed articles by leading chemical engineers, applied scientists and mathematicians. The broad interest today in solutions through chemistry to some of the world’s most challenging problems ensures that Reviews in Chemical Engineering will play a significant role in the growth of the field as a whole.