MODELLING THE MULTITEAM PREY–PREDATOR DYNAMICS USING THE DELAY DIFFERENTIAL EQUATION

Q3 Multidisciplinary
Shiv Raj, Pankaj Kumar
{"title":"MODELLING THE MULTITEAM PREY–PREDATOR DYNAMICS USING THE DELAY DIFFERENTIAL EQUATION","authors":"Shiv Raj, Pankaj Kumar","doi":"10.22452/mjs.vol42no1.5","DOIUrl":null,"url":null,"abstract":"In nature, many species form teams and move in herds from one place to another. This helps them in reducing the risk of predation. Time delay caused by the age structure, maturation period, and feeding time is a major factor in real-time prey–predator dynamics that result in periodic solutions and the bifurcation phenomenon. This study analysed the behaviour of teamed-up prey populations against predation by using a mathematical model. The following variables were considered: the prey population Pr1, the prey population Pr2, and the predator population Pr3. The interior equilibrium point was calculated. A local satiability analysis was performed to ensure a feasible interior equilibrium. The effect of the delay parameter on the dynamics was examined. A Hopf bifurcation was noted when the delay parameter crossed the critical value. Direction analysis was performed using the centre manifold theorem. The graphs of analytical results were plotted using MATLAB.","PeriodicalId":18094,"journal":{"name":"Malaysian journal of science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian journal of science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22452/mjs.vol42no1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

In nature, many species form teams and move in herds from one place to another. This helps them in reducing the risk of predation. Time delay caused by the age structure, maturation period, and feeding time is a major factor in real-time prey–predator dynamics that result in periodic solutions and the bifurcation phenomenon. This study analysed the behaviour of teamed-up prey populations against predation by using a mathematical model. The following variables were considered: the prey population Pr1, the prey population Pr2, and the predator population Pr3. The interior equilibrium point was calculated. A local satiability analysis was performed to ensure a feasible interior equilibrium. The effect of the delay parameter on the dynamics was examined. A Hopf bifurcation was noted when the delay parameter crossed the critical value. Direction analysis was performed using the centre manifold theorem. The graphs of analytical results were plotted using MATLAB.
基于时滞微分方程的多团队捕食动力学建模
在自然界中,许多物种组成团队,成群结队地从一个地方移动到另一个地方。这有助于它们减少被捕食的风险。由年龄结构、成熟期和摄食时间引起的时间延迟是实时食饵-捕食动力学的主要因素,导致周期解和分岔现象。这项研究通过使用数学模型分析了组队猎物群体对抗捕食者的行为。考虑以下变量:猎物种群Pr1,猎物种群Pr2,捕食者种群Pr3。计算了内部平衡点。进行了局部满足性分析,以确保可行的内部平衡。考察了延迟参数对动力学特性的影响。当延迟参数超过临界值时,出现Hopf分岔。利用中心流形定理进行了方向分析。利用MATLAB绘制了分析结果曲线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Malaysian journal of science
Malaysian journal of science Multidisciplinary-Multidisciplinary
CiteScore
1.10
自引率
0.00%
发文量
36
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信