K3 surfaces from configurations of six lines in $\mathbb{P}^2$ and mirror symmetry I

IF 1.2 3区 数学 Q1 MATHEMATICS
S. Hosono, B. Lian, Hiromichi Takagi, S. Yau
{"title":"K3 surfaces from configurations of six lines in $\\mathbb{P}^2$ and mirror symmetry I","authors":"S. Hosono, B. Lian, Hiromichi Takagi, S. Yau","doi":"10.4310/cntp.2020.v14.n4.a2","DOIUrl":null,"url":null,"abstract":"From the viewpoint of mirror symmetry, we revisit the hypergeometric system $E(3,6)$ for a family of K3 surfaces. We construct a good resolution of the Baily-Borel-Satake compactification of its parameter space, which admits special boundary points (LCSLs) given by normal crossing divisors. We find local isomorphisms between the $E(3,6)$ systems and the associated GKZ systems defined locally on the parameter space and cover the entire parameter space. Parallel structures are conjectured in general for hypergeometric system $E(n,m)$ on Grassmannians. Local solutions and mirror symmetry will be described in a companion paper \\cite{HLTYpartII}, where we introduce a K3 analogue of the elliptic lambda function in terms of genus two theta functions.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2020.v14.n4.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

From the viewpoint of mirror symmetry, we revisit the hypergeometric system $E(3,6)$ for a family of K3 surfaces. We construct a good resolution of the Baily-Borel-Satake compactification of its parameter space, which admits special boundary points (LCSLs) given by normal crossing divisors. We find local isomorphisms between the $E(3,6)$ systems and the associated GKZ systems defined locally on the parameter space and cover the entire parameter space. Parallel structures are conjectured in general for hypergeometric system $E(n,m)$ on Grassmannians. Local solutions and mirror symmetry will be described in a companion paper \cite{HLTYpartII}, where we introduce a K3 analogue of the elliptic lambda function in terms of genus two theta functions.
来自$\mathbb{P}^2}中六条线的配置和镜像对称I的K3曲面
从镜像对称的角度,我们重新审视了一类K3曲面的超几何系统$E(3,6)$。我们构造了其参数空间的Baily-Borel-Satake紧化的良好分辨率,该空间允许由法向交叉因子给出的特殊边界点(LCSLs)。我们发现$E(3,6)$系统和相关的GKZ系统之间的局部同构是在参数空间上局部定义的,并且覆盖整个参数空间。本文对超几何系统$E(n,m)$在grassmannian上的平行结构进行了一般的推测。局部解和镜像对称将在配套论文\cite{HLTYpartII}中描述,其中我们介绍了椭圆函数的K3模拟,以格两个函数的形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信