{"title":"Energy stability of exponential time differencing schemes for the nonlocal Cahn‐Hilliard equation","authors":"Quan Zhou, Yabing Sun","doi":"10.1002/num.23035","DOIUrl":null,"url":null,"abstract":"The nonlocal Cahn‐Hilliard equation has attracted much attention these years. Despite the advantage of describing more practical phenomena for modeling phase transitions of microstructures in materials, the nonlocal operator in the equation brings a lot of extra computational costs compared with the local Cahn‐Hilliard equation. Thus high order time integration schemes are needed in numerical simulations. In this paper, we propose two classes of exponential time differencing (ETD) schemes for solving the nonlocal Cahn‐Hilliard equation. We first use the Fourier collocation method to discretize the spatial domain, and then the ETD‐based multistep and Runge‐Kutta schemes are adopted for the time integration. In particular, some specific multistep and Runge‐Kutta schemes up to fourth order are constructed. We rigorously establish the energy stabilities of the multistep schemes up to fourth order and the second order Runge‐Kutta scheme, which show that the first order ETD and the second order Runge‐Kutta schemes unconditionally decrease the original energy. We also theoretically prove the mass conservations of the proposed schemes. Several numerical experiments in two and three dimensions are carried out to test the temporal convergence rates of the schemes and to verify their mass conservations and energy stabilities. The long time simulations of coarsening dynamics are also performed to verify the power law for the energy decay.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"39 1","pages":"4030 - 4058"},"PeriodicalIF":2.1000,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23035","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The nonlocal Cahn‐Hilliard equation has attracted much attention these years. Despite the advantage of describing more practical phenomena for modeling phase transitions of microstructures in materials, the nonlocal operator in the equation brings a lot of extra computational costs compared with the local Cahn‐Hilliard equation. Thus high order time integration schemes are needed in numerical simulations. In this paper, we propose two classes of exponential time differencing (ETD) schemes for solving the nonlocal Cahn‐Hilliard equation. We first use the Fourier collocation method to discretize the spatial domain, and then the ETD‐based multistep and Runge‐Kutta schemes are adopted for the time integration. In particular, some specific multistep and Runge‐Kutta schemes up to fourth order are constructed. We rigorously establish the energy stabilities of the multistep schemes up to fourth order and the second order Runge‐Kutta scheme, which show that the first order ETD and the second order Runge‐Kutta schemes unconditionally decrease the original energy. We also theoretically prove the mass conservations of the proposed schemes. Several numerical experiments in two and three dimensions are carried out to test the temporal convergence rates of the schemes and to verify their mass conservations and energy stabilities. The long time simulations of coarsening dynamics are also performed to verify the power law for the energy decay.
期刊介绍:
An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.