G. Cerulli, R. Simone, F. Di Iorio, D. Piccolo, Christopher F. Baum
{"title":"Fitting mixture models for feeling and uncertainty for rating data analysis","authors":"G. Cerulli, R. Simone, F. Di Iorio, D. Piccolo, Christopher F. Baum","doi":"10.1177/1536867X221083927","DOIUrl":null,"url":null,"abstract":"In this article, we present the command cub, which fits ordinal rating data using combination of uniform and binomial (CUB) models, a class of finite mixture distributions accounting for both feeling and uncertainty of the response process. CUB identifies the components that define the mixture in the baseline model specification. We apply maximum likelihood methods to estimate feeling and uncertainty parameters, which are possibly explained in terms of covariates. An extension to inflated CUB models is discussed. We also present a subcommand, scattercub, for visualization of results. We then illustrate the use of cub using a case study on students’ satisfaction for the orientation services provided by the University of Naples Federico II in Italy.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":"22 1","pages":"195 - 223"},"PeriodicalIF":3.2000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stata Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1536867X221083927","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
In this article, we present the command cub, which fits ordinal rating data using combination of uniform and binomial (CUB) models, a class of finite mixture distributions accounting for both feeling and uncertainty of the response process. CUB identifies the components that define the mixture in the baseline model specification. We apply maximum likelihood methods to estimate feeling and uncertainty parameters, which are possibly explained in terms of covariates. An extension to inflated CUB models is discussed. We also present a subcommand, scattercub, for visualization of results. We then illustrate the use of cub using a case study on students’ satisfaction for the orientation services provided by the University of Naples Federico II in Italy.
期刊介绍:
The Stata Journal is a quarterly publication containing articles about statistics, data analysis, teaching methods, and effective use of Stata''s language. The Stata Journal publishes reviewed papers together with shorter notes and comments, regular columns, book reviews, and other material of interest to researchers applying statistics in a variety of disciplines.