{"title":"Suppressing SARS-CoV2 Genome Replication: A Way to Overcome the Rate of Spread","authors":"Leila Mousavizadeh, S. Ghasemi","doi":"10.30491/JABR.2021.255853.1310","DOIUrl":null,"url":null,"abstract":"One of the main reasons for the high prevalence of SARS-CoV2 is the high speed of its replication and reproduction. The replication inhibitors are under investigation due to the importance of prevention of the spread of coronavirus disease 2019 (COVID-19). In coronavirus replication, the virus enters the cell by endocytosis. After uncoating, the positive-strand RNA is translated to produce the non-structural protein (NCP) precursors. These precursors are cleaved and form mature, functional helicase and RNA polymerase. A replication-transcription complex (RTC) is then formed. Targeting the various stages of this process may be useful in preventing the spread of this epidemic. According to the similarity of COVID-19 replication to the other single-stranded RNA viruses such as HCV, Ebola Virus, and Marburg, the best way to prevent the spread of infection is the viral genome replication targeting with specific drugs after exposure to the virus. For COVID-19 medications, and compounds that target SARS-CoV2 replication are being tested in silico, in vitro, or in vivo, and according to other clinical trials that have been applied for SARS-CoV and MERS-CoV. Inhibitor drugs in the attachment, protease, and replication stages can prevent the virus from multiplying. By reviewing previous related articles in this field, in this review article, we are trying to focus on all information related to genome replication and categorize known drugs that have been applied as clinical trial treatments. The use of these drugs and other medications seems to be effective in reducing the prevalence of COVID-19.","PeriodicalId":14945,"journal":{"name":"Journal of Applied Biotechnology Reports","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30491/JABR.2021.255853.1310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
One of the main reasons for the high prevalence of SARS-CoV2 is the high speed of its replication and reproduction. The replication inhibitors are under investigation due to the importance of prevention of the spread of coronavirus disease 2019 (COVID-19). In coronavirus replication, the virus enters the cell by endocytosis. After uncoating, the positive-strand RNA is translated to produce the non-structural protein (NCP) precursors. These precursors are cleaved and form mature, functional helicase and RNA polymerase. A replication-transcription complex (RTC) is then formed. Targeting the various stages of this process may be useful in preventing the spread of this epidemic. According to the similarity of COVID-19 replication to the other single-stranded RNA viruses such as HCV, Ebola Virus, and Marburg, the best way to prevent the spread of infection is the viral genome replication targeting with specific drugs after exposure to the virus. For COVID-19 medications, and compounds that target SARS-CoV2 replication are being tested in silico, in vitro, or in vivo, and according to other clinical trials that have been applied for SARS-CoV and MERS-CoV. Inhibitor drugs in the attachment, protease, and replication stages can prevent the virus from multiplying. By reviewing previous related articles in this field, in this review article, we are trying to focus on all information related to genome replication and categorize known drugs that have been applied as clinical trial treatments. The use of these drugs and other medications seems to be effective in reducing the prevalence of COVID-19.
期刊介绍:
The Journal of Applied Biotechnology Reports (JABR) publishes papers describing experimental work relating to all fundamental issues of biotechnology including: Cell Biology, Genetics, Microbiology, Immunology, Molecular Biology, Biochemistry, Embryology, Immunogenetics, Cell and Tissue Culture, Molecular Ecology, Genetic Engineering and Biological Engineering, Bioremediation and Biodegradation, Bioinformatics, Biotechnology Regulations, Pharmacogenomics, Gene Therapy, Plant, Animal, Microbial and Environmental Biotechnology, Nanobiotechnology, Medical Biotechnology, Biosafety, Biosecurity, Bioenergy, Biomass, Biomaterials and Biobased Chemicals and Enzymes. Journal of Applied Biotechnology Reports promotes a special emphasis on: -Improvement methods in biotechnology -Optimization process for high production in fermentor systems -Protein and enzyme engineering -Antibody engineering and monoclonal antibody -Molecular farming -Bioremediation -Immobilizing methods -biocatalysis