A dataset of biomass estimation models and parameters of spruces in Xinjiang from 1980 to 2021

L. Luo, Tingting Liu, Lina Hu, Shanshan Cao, Wei Sun
{"title":"A dataset of biomass estimation models and parameters of spruces in Xinjiang from 1980 to 2021","authors":"L. Luo, Tingting Liu, Lina Hu, Shanshan Cao, Wei Sun","doi":"10.11922/11-6035.nasdc.2022.0012.zh","DOIUrl":null,"url":null,"abstract":"Spruces are an important tree species in Xinjiang. Accurate estimation of spruce biomass plays an important role in evaluating forest ecological structure and forest carbon balance in Xinjiang. In this study, we collected the relevant literature of Xinjiang spruce biomass estimation model from CNKI, Web of Science and the National Public Service Platform for Standards Information by constructing a retrieval method. And we collated the literature and used CiteSpace software for visualized mapping, so as to create a dataset of biomass estimation models and parameters of spruces in Xinjiang from 1980 to 2021. Biomass estimation models consist of biomass estimation models based on measurable factors and biomass estimation models based on remote sensing, machine learning algorithm. The former has 13 types, 101 fitting formulas, applicable to the estimation of different spruce organs, and the ground biomass; the latter has 3 types, 12 fitting formulas, suitable for the estimation of spruce forest biomass. This dataset can provide model data support for the study on spruce biomass estimation in Xinjiang.","PeriodicalId":57643,"journal":{"name":"China Scientific Data","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Scientific Data","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.11922/11-6035.nasdc.2022.0012.zh","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spruces are an important tree species in Xinjiang. Accurate estimation of spruce biomass plays an important role in evaluating forest ecological structure and forest carbon balance in Xinjiang. In this study, we collected the relevant literature of Xinjiang spruce biomass estimation model from CNKI, Web of Science and the National Public Service Platform for Standards Information by constructing a retrieval method. And we collated the literature and used CiteSpace software for visualized mapping, so as to create a dataset of biomass estimation models and parameters of spruces in Xinjiang from 1980 to 2021. Biomass estimation models consist of biomass estimation models based on measurable factors and biomass estimation models based on remote sensing, machine learning algorithm. The former has 13 types, 101 fitting formulas, applicable to the estimation of different spruce organs, and the ground biomass; the latter has 3 types, 12 fitting formulas, suitable for the estimation of spruce forest biomass. This dataset can provide model data support for the study on spruce biomass estimation in Xinjiang.
1980-2021年新疆云杉生物量估算模型和参数数据集
云杉是新疆重要的乔木树种。准确估算云杉生物量对评价新疆森林生态结构和森林碳平衡具有重要意义。本研究通过构建检索方法,从CNKI、Web of Science和国家标准信息公共服务平台上收集了新疆云杉生物量估算模型的相关文献。通过文献整理,利用CiteSpace软件进行可视化制图,建立了1980 - 2021年新疆云杉生物量估算模型和参数数据集。生物量估算模型包括基于可测量因子的生物量估算模型和基于遥感、机器学习算法的生物量估算模型。前者有13种类型,101个拟合公式,适用于云杉不同器官和地面生物量的估算;后者有3种类型,12种拟合公式,适用于云杉林生物量的估算。该数据集可为新疆云杉生物量估算研究提供模型数据支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
389
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信