Evaluating Efficiency of a Provincial Telerehabilitation Service in Improving Access to Care During the COVID-19 Pandemic.

IF 2.5 Q1 REHABILITATION
International Journal of Telerehabilitation Pub Date : 2023-05-11 eCollection Date: 2023-01-01 DOI:10.5195/ijt.2023.6523
Katelyn Brehon, Jay Carriere, Katie Churchill, Adalberto Loyola-Sanchez, Elizabeth Papathanassoglou, Rob MacIsaac, Mahdi Tavakoli, Chester Ho, Kiran Pohar Manhas
{"title":"Evaluating Efficiency of a Provincial Telerehabilitation Service in Improving Access to Care During the COVID-19 Pandemic.","authors":"Katelyn Brehon, Jay Carriere, Katie Churchill, Adalberto Loyola-Sanchez, Elizabeth Papathanassoglou, Rob MacIsaac, Mahdi Tavakoli, Chester Ho, Kiran Pohar Manhas","doi":"10.5195/ijt.2023.6523","DOIUrl":null,"url":null,"abstract":"<p><strong>Scope: </strong>Early in the COVID-19 pandemic, community rehabilitation stakeholders from a provincial health system designed a novel telerehabilitation service. The service provided wayfinding and self-management advice to individuals with musculoskeletal concerns, neurological conditions, or post-COVID-19 recovery needs. This study evaluated the efficiency of the service in improving access to care.</p><p><strong>Methodology: </strong>We used multiple methods including secondary data analyses of call metrics, narrative analyses of clinical notes using artificial intelligence (AI) and machine learning (ML), and qualitative interviews.</p><p><strong>Conclusions: </strong>Interviews revealed that the telerehabilitation service had the potential to positively impact access to rehabilitation during the COVID-19 pandemic, for individuals living rurally, and for individuals on wait lists. Call metric analyses revealed that efficiency may be enhanced if call handling time was reduced. AI/ML analyses found that pain was the most frequently-mentioned keyword in clinical notes, suggesting an area for additional telerehabilitation resources to ensure efficiency.</p>","PeriodicalId":45323,"journal":{"name":"International Journal of Telerehabilitation","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687995/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Telerehabilitation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5195/ijt.2023.6523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"REHABILITATION","Score":null,"Total":0}
引用次数: 0

Abstract

Scope: Early in the COVID-19 pandemic, community rehabilitation stakeholders from a provincial health system designed a novel telerehabilitation service. The service provided wayfinding and self-management advice to individuals with musculoskeletal concerns, neurological conditions, or post-COVID-19 recovery needs. This study evaluated the efficiency of the service in improving access to care.

Methodology: We used multiple methods including secondary data analyses of call metrics, narrative analyses of clinical notes using artificial intelligence (AI) and machine learning (ML), and qualitative interviews.

Conclusions: Interviews revealed that the telerehabilitation service had the potential to positively impact access to rehabilitation during the COVID-19 pandemic, for individuals living rurally, and for individuals on wait lists. Call metric analyses revealed that efficiency may be enhanced if call handling time was reduced. AI/ML analyses found that pain was the most frequently-mentioned keyword in clinical notes, suggesting an area for additional telerehabilitation resources to ensure efficiency.

评估省级远程康复服务在COVID-19大流行期间改善护理可及性的效率
范围:在2019冠状病毒病大流行早期,来自省级卫生系统的社区康复利益相关者设计了一种新型远程康复服务。该服务为有肌肉骨骼问题、神经系统疾病或covid -19后恢复需求的个人提供寻路和自我管理建议。这项研究评估了该服务在改善获得护理方面的效率。方法:我们使用了多种方法,包括呼叫指标的辅助数据分析,使用人工智能(AI)和机器学习(ML)对临床记录进行叙事分析,以及定性访谈。结论:访谈显示,在2019冠状病毒病大流行期间,远程康复服务有可能对农村居民和等候名单上的个人获得康复产生积极影响。呼叫度量分析显示,如果呼叫处理时间减少,效率可能会提高。人工智能/机器学习分析发现,疼痛是临床记录中最常提到的关键词,这表明需要额外的远程康复资源来确保效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
6.10%
发文量
14
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信