Metrics and compactifications of Teichmüller spaces of flat tori

IF 0.5 4区 数学 Q3 MATHEMATICS
M. Greenfield, L. Ji
{"title":"Metrics and compactifications of Teichmüller spaces of flat tori","authors":"M. Greenfield, L. Ji","doi":"10.4310/ajm.2021.v25.n4.a2","DOIUrl":null,"url":null,"abstract":"Using the identification of the symmetric space $\\mathrm{SL}(n,\\mathbb{R})/\\mathrm{SO}(n)$ with the Teichm\\\"uller space of flat $n$-tori of unit volume, we explore several metrics and compactifications of these spaces, drawing inspiration both from Teichm\\\"uller theory and symmetric spaces. We define and study analogs of the Thurston, Teichm\\\"uller, and Weil-Petersson metrics. We show the Teichm\\\"uller metric is a symmetrization of the Thurston metric, which is a polyhedral Finsler metric, and the Weil-Petersson metric is the Riemannian metric of $\\mathrm{SL}(n,\\mathbb{R})/\\mathrm{SO}(n)$ as a symmetric space. We also construct a Thurston-type compactification using measured foliations on $n$-tori, and show that the horofunction compactification with respect to the Thurston metric is isomorphic to it, as well as to a minimal Satake compactification.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2021.v25.n4.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

Using the identification of the symmetric space $\mathrm{SL}(n,\mathbb{R})/\mathrm{SO}(n)$ with the Teichm\"uller space of flat $n$-tori of unit volume, we explore several metrics and compactifications of these spaces, drawing inspiration both from Teichm\"uller theory and symmetric spaces. We define and study analogs of the Thurston, Teichm\"uller, and Weil-Petersson metrics. We show the Teichm\"uller metric is a symmetrization of the Thurston metric, which is a polyhedral Finsler metric, and the Weil-Petersson metric is the Riemannian metric of $\mathrm{SL}(n,\mathbb{R})/\mathrm{SO}(n)$ as a symmetric space. We also construct a Thurston-type compactification using measured foliations on $n$-tori, and show that the horofunction compactification with respect to the Thurston metric is isomorphic to it, as well as to a minimal Satake compactification.
平面环面的Teichmüller空间的度量与紧性
利用对称空间$\mathrm{SL}(n,\mathbb{R})/\mathrm{SO}(n)$与单位体积的平面$n$-tori的Teichm“uller空间的识别,我们从Teichm”uller理论和对称空间中得到了启发,探索了这些空间的几种度量和紧化。我们定义并研究了Thurston、Teichm\“uller和Weil-Petersson度量的类似物。我们证明了Teichm\”uller度量是Thurston度量的对称化,Thurston是一个多面体Finsler度量,Weil-Peterson度量是$\mathrm{SL}(n,\mathbb{R})/\mathrm{SO}(n)$作为对称空间的黎曼度量。我们还利用$n$-tori上的测量叶理构造了一个Thurston型紧化,并证明了关于Thurston度量的钟表函数紧化同构于它,也同构于极小Satake紧化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信