{"title":"Scaling limits of anisotropic growth on logarithmic time-scales","authors":"George Liddle, Amanda G. Turner","doi":"10.1214/23-ejp964","DOIUrl":null,"url":null,"abstract":"We study the anisotropic version of the Hastings-Levitov model AHL$(\\nu)$. Previous results have shown that on bounded time-scales the harmonic measure on the boundary of the cluster converges, in the small-particle limit, to the solution of a deterministic ordinary differential equation. We consider the evolution of the harmonic measure on time-scales which grow logarithmically as the particle size converges to zero and show that, over this time-scale, the leading order behaviour of the harmonic measure becomes random. Specifically, we show that there exists a critical logarithmic time window in which the harmonic measure flow, started from the unstable fixed point, moves stochastically from the unstable point towards a stable fixed point, and we show that the full trajectory can be characterised in terms of a single Gaussian random variable.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejp964","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the anisotropic version of the Hastings-Levitov model AHL$(\nu)$. Previous results have shown that on bounded time-scales the harmonic measure on the boundary of the cluster converges, in the small-particle limit, to the solution of a deterministic ordinary differential equation. We consider the evolution of the harmonic measure on time-scales which grow logarithmically as the particle size converges to zero and show that, over this time-scale, the leading order behaviour of the harmonic measure becomes random. Specifically, we show that there exists a critical logarithmic time window in which the harmonic measure flow, started from the unstable fixed point, moves stochastically from the unstable point towards a stable fixed point, and we show that the full trajectory can be characterised in terms of a single Gaussian random variable.
期刊介绍:
The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory.
Both ECP and EJP are official journals of the Institute of Mathematical Statistics
and the Bernoulli society.