Generalized von Mangoldt surfaces of revolution and asymmetric two-spheres of revolution with simple cut locus structure

Pub Date : 2022-02-02 DOI:10.2969/jmsj/88838883
Minoru Tanaka, T. Akamatsu, R. Sinclair, M. Yamaguchi
{"title":"Generalized von Mangoldt surfaces of revolution and asymmetric two-spheres of revolution with simple cut locus structure","authors":"Minoru Tanaka, T. Akamatsu, R. Sinclair, M. Yamaguchi","doi":"10.2969/jmsj/88838883","DOIUrl":null,"url":null,"abstract":"It is known that if the Gaussian curvature function along each meridian on a surface of revolution ( R 2 , dr 2 + m ( r ) 2 dθ 2 ) is decreasing, then the cut locus of each point of θ − 1 (0) is empty or a subarc of the opposite meridian θ − 1 ( π ) . Such a surface is called a von Mangoldt’s surface of revolution . A surface of revolution ( R 2 , dr 2 + m ( r ) 2 dθ 2 ) is called a generalized von Mangoldt surface of revolution if the cut locus of each point of θ − 1 (0) is empty or a subarc of the opposite meridian θ − 1 ( π ) . For example, the surface of revolution ( R 2 , dr 2 + m 0 ( r ) 2 dθ 2 ) , where m 0 ( x ) = x/ (1 + x 2 ) , has the same cut locus structure as above and the cut locus of each point in r − 1 ((0 , ∞ )) is nonempty. Note that the Gaussian curvature function is not decreasing along a meridian for this surface. In this article, we give sufficient conditions for a surface of revolution ( R 2 , dr 2 + m ( r ) 2 dθ 2 ) to be a generalized von Mangoldt surface of revolution. Moreover, we prove that for any surface of revolution with finite total curvature c, there exists a generalized von Mangoldt surface of revolution with the same total curvature c such that the Gaussian curvature function along a meridian is not monotone on [ a, ∞ ) for any a > 0 .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/88838883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

It is known that if the Gaussian curvature function along each meridian on a surface of revolution ( R 2 , dr 2 + m ( r ) 2 dθ 2 ) is decreasing, then the cut locus of each point of θ − 1 (0) is empty or a subarc of the opposite meridian θ − 1 ( π ) . Such a surface is called a von Mangoldt’s surface of revolution . A surface of revolution ( R 2 , dr 2 + m ( r ) 2 dθ 2 ) is called a generalized von Mangoldt surface of revolution if the cut locus of each point of θ − 1 (0) is empty or a subarc of the opposite meridian θ − 1 ( π ) . For example, the surface of revolution ( R 2 , dr 2 + m 0 ( r ) 2 dθ 2 ) , where m 0 ( x ) = x/ (1 + x 2 ) , has the same cut locus structure as above and the cut locus of each point in r − 1 ((0 , ∞ )) is nonempty. Note that the Gaussian curvature function is not decreasing along a meridian for this surface. In this article, we give sufficient conditions for a surface of revolution ( R 2 , dr 2 + m ( r ) 2 dθ 2 ) to be a generalized von Mangoldt surface of revolution. Moreover, we prove that for any surface of revolution with finite total curvature c, there exists a generalized von Mangoldt surface of revolution with the same total curvature c such that the Gaussian curvature function along a meridian is not monotone on [ a, ∞ ) for any a > 0 .
分享
查看原文
具有简单切割轨迹结构的广义von Mangoldt公转曲面和不对称两公转球面
已知,如果沿旋转表面上每个子午线的高斯曲率函数(R2,dr2+m(R)2dθ2)是递减的,则θ−1(0)的每个点的切割轨迹是空的或相反子午线θ−1的子弧(π)。这样的表面被称为冯的革命表面。如果θ−1(0)的每个点的切割轨迹为空或相对子午线θ−1的子弧,则旋转表面(R2,dr2+m(R)2dθ2)称为广义von Mangoldt旋转表面。例如,旋转表面(R2,dr2+m0(R)2dθ2),其中m0(x)=x/(1+x2),具有与上述相同的切割轨迹结构,并且R−1((0,∞))中每个点的切割轨迹都是非空的。请注意,对于该曲面,高斯曲率函数不会沿子午线减小。本文给出了旋转曲面(R2,dr2+m(R)2dθ2)为广义von Mangoldt旋转曲面的充分条件。此外,我们证明了对于任何具有有限总曲率c的旋转曲面,存在具有相同总曲率c广义von Mangoldt旋转曲面,使得对于任何a>0,沿着子午线的高斯曲率函数在[a,∞)上不是单调的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信