Fujita-type theorems for a quasilinear parabolic differential inequality with weighted nonlocal source term

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuepeng Li, Z. Fang
{"title":"Fujita-type theorems for a quasilinear parabolic differential inequality with weighted nonlocal source term","authors":"Yuepeng Li, Z. Fang","doi":"10.1515/anona-2022-0303","DOIUrl":null,"url":null,"abstract":"Abstract This work is concerned with the nonexistence of nontrivial nonnegative weak solutions for a quasilinear parabolic differential inequality with weighted nonlocal source term in the whole space, which involves weighted polytropic filtration operator or generalized mean curvature operator. We establish the new critical Fujita exponents containing the first and second types. The key ingredient of the technique in proof is the test function method developed by Mitidieri and Pohozaev. No use of comparison and maximum principles or assumptions on symmetry or behavior at infinity of the solutions are required.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0303","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract This work is concerned with the nonexistence of nontrivial nonnegative weak solutions for a quasilinear parabolic differential inequality with weighted nonlocal source term in the whole space, which involves weighted polytropic filtration operator or generalized mean curvature operator. We establish the new critical Fujita exponents containing the first and second types. The key ingredient of the technique in proof is the test function method developed by Mitidieri and Pohozaev. No use of comparison and maximum principles or assumptions on symmetry or behavior at infinity of the solutions are required.
具有加权非局部源项的拟线性抛物型微分不等式的Fujita型定理
研究了一类带加权非局部源项的拟线性抛物型微分不等式在整个空间中非平凡非负弱解的不存在性,涉及加权多向滤波算子或广义平均曲率算子。建立了包含第一类和第二类的新的临界Fujita指数。证明技术的关键要素是米蒂耶里和波霍扎耶夫提出的测试函数法。不需要使用比较和极大值原理或对解的对称性或无穷远处的行为的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信