The ordinary negative changing refractive index for estimation of optical confinement factor

IF 0.5 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
A. S. Abdullah, Sadeq Adnan Hbeeb
{"title":"The ordinary negative changing refractive index for estimation of optical confinement factor","authors":"A. S. Abdullah, Sadeq Adnan Hbeeb","doi":"10.2478/ijssis-2022-0009","DOIUrl":null,"url":null,"abstract":"Abstract The electro-optic effect is considered very important in optical communication systems. The small optical confinement factor is attributed to the weak overlap between the electric field and optical wave and hence the optical signal is not efficiently modulated. In this paper, the problem of the small optical confinement factor in the Mach–Zehnder modulator based on lithium niobate (LN) which is deeply studied. The data were analyzed through a proposed mathematical model to explain the relationship between the change in the ordinary negative refractive index and the confinement factor. The system is improved using a small length of the modulator arm as only 3 to 8 µm, low driving power of about 4 V/µm, a large change in the negative ordinary refractive index of about—0.2 × 10−7, and a compact optical modulator. This can reflect a strong optical confinement factor when the electric field is applied to the electrodes of the optical modulator.","PeriodicalId":45623,"journal":{"name":"International Journal on Smart Sensing and Intelligent Systems","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Smart Sensing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijssis-2022-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The electro-optic effect is considered very important in optical communication systems. The small optical confinement factor is attributed to the weak overlap between the electric field and optical wave and hence the optical signal is not efficiently modulated. In this paper, the problem of the small optical confinement factor in the Mach–Zehnder modulator based on lithium niobate (LN) which is deeply studied. The data were analyzed through a proposed mathematical model to explain the relationship between the change in the ordinary negative refractive index and the confinement factor. The system is improved using a small length of the modulator arm as only 3 to 8 µm, low driving power of about 4 V/µm, a large change in the negative ordinary refractive index of about—0.2 × 10−7, and a compact optical modulator. This can reflect a strong optical confinement factor when the electric field is applied to the electrodes of the optical modulator.
用普通的负变化折射率估计光约束系数
摘要电光效应在光通信系统中被认为是非常重要的。小的光学限制因子归因于电场和光波之间的弱重叠,因此光学信号没有被有效地调制。本文对基于铌酸锂(LN)的马赫-曾德尔调制器中的小光学约束因子问题进行了深入研究。通过所提出的数学模型对数据进行分析,以解释普通负折射率的变化与限制因子之间的关系。该系统使用仅为3至8µm的小长度调制器臂、约4 V/µm的低驱动功率、约-0.2×10−7的负普通折射率的大变化以及紧凑的光学调制器进行了改进。当电场被施加到光调制器的电极时,这可以反映出强的光学限制因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
8.30%
发文量
15
审稿时长
8 weeks
期刊介绍: nternational Journal on Smart Sensing and Intelligent Systems (S2IS) is a rapid and high-quality international forum wherein academics, researchers and practitioners may publish their high-quality, original, and state-of-the-art papers describing theoretical aspects, system architectures, analysis and design techniques, and implementation experiences in intelligent sensing technologies. The journal publishes articles reporting substantive results on a wide range of smart sensing approaches applied to variety of domain problems, including but not limited to: Ambient Intelligence and Smart Environment Analysis, Evaluation, and Test of Smart Sensors Intelligent Management of Sensors Fundamentals of Smart Sensing Principles and Mechanisms Materials and its Applications for Smart Sensors Smart Sensing Applications, Hardware, Software, Systems, and Technologies Smart Sensors in Multidisciplinary Domains and Problems Smart Sensors in Science and Engineering Smart Sensors in Social Science and Humanity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信