O. Daugovish, B. Faber, E. Takele, J. Whiteford, Laosheng Wu
{"title":"Cover crop and mulch practices reduce agricultural pollutant loads in stormwater runoff from plastic tunnels","authors":"O. Daugovish, B. Faber, E. Takele, J. Whiteford, Laosheng Wu","doi":"10.3733/ca.2020a0004","DOIUrl":null,"url":null,"abstract":"Macrotunnel production systems contribute over $1 billion to California's economy, but despite increased use, guidance to help macrotunnel growers limit agricultural pollutant loads in rainfall-induced runoff is sparse. Using raspberry as a model crop, we evaluated four runoff management practices during two rainy seasons of the normal 3-year raspberry production cycle: barley cover crop seeded at 500 pounds per acre, weed barrier fabric, yard waste mulch spread 2 to 3 inches thick, and polyacrylamide (PAM). Treatments were applied to 300-foot-by-6-foot-wide post rows. Barley cover crop and mulch reduced combined nitrate and nitrite nitrogen in runoff by 21% to 48% at some runoff events and reduced nitrate nitrogen in soil and leachate to groundwater by 52% to 90%. All treatments reduced turbidity and phosphorus levels in runoff and had 75% to 97% less sediment accumulation compared with bare soil. Additionally, all treatments except PAM reduced weed densities by 48% to 87% compared with bare ground, which reduced the costs of weed management. Barley cover crop had the lowest estimated costs (~$60.00 per tunnel period), while PAM and mulch were highest (~$193.00 per tunnel period).","PeriodicalId":9409,"journal":{"name":"California Agriculture","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"California Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3733/ca.2020a0004","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Macrotunnel production systems contribute over $1 billion to California's economy, but despite increased use, guidance to help macrotunnel growers limit agricultural pollutant loads in rainfall-induced runoff is sparse. Using raspberry as a model crop, we evaluated four runoff management practices during two rainy seasons of the normal 3-year raspberry production cycle: barley cover crop seeded at 500 pounds per acre, weed barrier fabric, yard waste mulch spread 2 to 3 inches thick, and polyacrylamide (PAM). Treatments were applied to 300-foot-by-6-foot-wide post rows. Barley cover crop and mulch reduced combined nitrate and nitrite nitrogen in runoff by 21% to 48% at some runoff events and reduced nitrate nitrogen in soil and leachate to groundwater by 52% to 90%. All treatments reduced turbidity and phosphorus levels in runoff and had 75% to 97% less sediment accumulation compared with bare soil. Additionally, all treatments except PAM reduced weed densities by 48% to 87% compared with bare ground, which reduced the costs of weed management. Barley cover crop had the lowest estimated costs (~$60.00 per tunnel period), while PAM and mulch were highest (~$193.00 per tunnel period).