Diffusion approximation of controlled branching processes using limit theorems for random step processes

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
Miguel González, Pedro Martín-Chávez, I. D. del Puerto
{"title":"Diffusion approximation of controlled branching processes using limit theorems for random step processes","authors":"Miguel González, Pedro Martín-Chávez, I. D. del Puerto","doi":"10.1080/15326349.2022.2066131","DOIUrl":null,"url":null,"abstract":"Abstract A controlled branching process (CBP) is a modification of the standard Bienaymé–Galton–Watson process in which the number of progenitors in each generation is determined by a random mechanism. We consider a CBP starting from a random number of initial individuals. The main aim of this article is to provide a Feller diffusion approximation for critical CBPs. A similar result by considering a fixed number of initial individuals by using operator semigroup convergence theorems has been previously proved by Sriram et al. (Stochastic Processes Appl. 2007;117:928–946). An alternative proof is now provided making use of limit theorems for random step processes.","PeriodicalId":21970,"journal":{"name":"Stochastic Models","volume":"39 1","pages":"232 - 248"},"PeriodicalIF":0.5000,"publicationDate":"2021-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/15326349.2022.2066131","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract A controlled branching process (CBP) is a modification of the standard Bienaymé–Galton–Watson process in which the number of progenitors in each generation is determined by a random mechanism. We consider a CBP starting from a random number of initial individuals. The main aim of this article is to provide a Feller diffusion approximation for critical CBPs. A similar result by considering a fixed number of initial individuals by using operator semigroup convergence theorems has been previously proved by Sriram et al. (Stochastic Processes Appl. 2007;117:928–946). An alternative proof is now provided making use of limit theorems for random step processes.
用随机步过程的极限定理对受控分支过程进行扩散逼近
摘要受控分支过程(CBP)是对标准Bienaymé–Galton–Watson过程的修改,其中每一代中的祖细胞数量由随机机制决定。我们认为CBP是从随机数目的初始个体开始的。本文的主要目的是提供临界CBP的Feller扩散近似。Sriram等人先前已经证明了通过使用算子半群收敛定理考虑固定数量的初始个体的类似结果。(随机过程应用2007;117:928–946)。利用随机步过程的极限定理,现在提供了另一种证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Models
Stochastic Models 数学-统计学与概率论
CiteScore
1.30
自引率
14.30%
发文量
42
审稿时长
>12 weeks
期刊介绍: Stochastic Models publishes papers discussing the theory and applications of probability as they arise in the modeling of phenomena in the natural sciences, social sciences and technology. It presents novel contributions to mathematical theory, using structural, analytical, algorithmic or experimental approaches. In an interdisciplinary context, it discusses practical applications of stochastic models to diverse areas such as biology, computer science, telecommunications modeling, inventories and dams, reliability, storage, queueing theory, mathematical finance and operations research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信