Maximum Interval of Stability and Convergence of Solution of a Forced Mathieu’s Equation

E. Eze, U. E. Obasi, R. N. Ujumadu, Grace Ihuoma Kalu
{"title":"Maximum Interval of Stability and Convergence of Solution of a Forced Mathieu’s Equation","authors":"E. Eze, U. E. Obasi, R. N. Ujumadu, Grace Ihuoma Kalu","doi":"10.4236/wjm.2020.1011015","DOIUrl":null,"url":null,"abstract":"This paper investigates the maximum interval of stability and convergence of solution of a forced Mathieu’s equation, using a combination of Frobenius method and Eigenvalue approach. The results indicated that the equilibrium point was found to be unstable and maximum bounds were found on the derivative of the restoring force showing sharp condition for the existence of periodic solution. Furthermore, the solution to Mathieu’s equation converges which extends and improves some results in literature.","PeriodicalId":70106,"journal":{"name":"力学国际期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"力学国际期刊(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/wjm.2020.1011015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the maximum interval of stability and convergence of solution of a forced Mathieu’s equation, using a combination of Frobenius method and Eigenvalue approach. The results indicated that the equilibrium point was found to be unstable and maximum bounds were found on the derivative of the restoring force showing sharp condition for the existence of periodic solution. Furthermore, the solution to Mathieu’s equation converges which extends and improves some results in literature.
一类强迫Mathieu方程解的稳定性和收敛性的最大区间
结合Frobenius方法和特征值方法,研究了一类强迫Mathieu方程解的稳定性和收敛性的最大区间。结果表明,平衡点是不稳定的,恢复力导数存在最大边界,证明周期解存在的尖锐条件。此外,Mathieu方程解的收敛性推广和改进了文献中的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
275
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信