{"title":"bm-Central Limit Theorems associated with non-symmetric positive cones","authors":"Lahcen Oussi, J. Wysoczánski","doi":"10.19195/0208-4147.39.1.12","DOIUrl":null,"url":null,"abstract":"Analogues of the classical Central Limit Theorem are proved in the noncommutative setting of random variables which are bmindependent and indexed by elements of positive non-symmetric cones, such as the circular cone, sectors in Euclidean spaces and the Vinberg cone. The geometry of the cones is shown to play a crucial role and the related volume characteristics of the cones is shown.","PeriodicalId":48996,"journal":{"name":"Probability and Mathematical Statistics-Poland","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability and Mathematical Statistics-Poland","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.19195/0208-4147.39.1.12","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2
Abstract
Analogues of the classical Central Limit Theorem are proved in the noncommutative setting of random variables which are bmindependent and indexed by elements of positive non-symmetric cones, such as the circular cone, sectors in Euclidean spaces and the Vinberg cone. The geometry of the cones is shown to play a crucial role and the related volume characteristics of the cones is shown.
期刊介绍:
PROBABILITY AND MATHEMATICAL STATISTICS is published by the Kazimierz Urbanik Center for Probability and Mathematical Statistics, and is sponsored jointly by the Faculty of Mathematics and Computer Science of University of Wrocław and the Faculty of Pure and Applied Mathematics of Wrocław University of Science and Technology. The purpose of the journal is to publish original contributions to the theory of probability and mathematical statistics.