{"title":"An accurate and efficient local one-dimensional method for the 3D acoustic wave equation","authors":"Mengling Wu, Yunzhi Jiang, Y. Ge","doi":"10.1515/dema-2022-0148","DOIUrl":null,"url":null,"abstract":"Abstract We establish an accurate and efficient scheme with four-order accuracy for solving three-dimensional (3D) acoustic wave equation. First, the local one-dimensional method is used to transfer the 3D wave equation into three one-dimensional wave equations. Then, a new scheme is obtained by the Padé formulas for computation of spatial second derivatives and the correction of the truncation error remainder for discretization of temporal second derivative. It is compact and can be solved directly by the Thomas algorithm. Subsequently, the Fourier analysis method and the Lax equivalence theorem are employed to prove the stability and convergence of the present scheme, which shows that it is conditionally stable and convergent, and the stability condition is superior to that of most existing numerical methods of equivalent order of accuracy in the literature. It allows us to reduce computational cost with relatively large time step lengths. Finally, numerical examples have demonstrated high accuracy, stability, and efficiency of our method.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":"55 1","pages":"528 - 552"},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0148","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract We establish an accurate and efficient scheme with four-order accuracy for solving three-dimensional (3D) acoustic wave equation. First, the local one-dimensional method is used to transfer the 3D wave equation into three one-dimensional wave equations. Then, a new scheme is obtained by the Padé formulas for computation of spatial second derivatives and the correction of the truncation error remainder for discretization of temporal second derivative. It is compact and can be solved directly by the Thomas algorithm. Subsequently, the Fourier analysis method and the Lax equivalence theorem are employed to prove the stability and convergence of the present scheme, which shows that it is conditionally stable and convergent, and the stability condition is superior to that of most existing numerical methods of equivalent order of accuracy in the literature. It allows us to reduce computational cost with relatively large time step lengths. Finally, numerical examples have demonstrated high accuracy, stability, and efficiency of our method.
期刊介绍:
Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.