Parallel transport of higher flat gerbes as an extended homotopy quantum field theory

IF 0.5 4区 数学
Lukas Müller, Lukas Woike
{"title":"Parallel transport of higher flat gerbes as an extended homotopy quantum field theory","authors":"Lukas Müller,&nbsp;Lukas Woike","doi":"10.1007/s40062-019-00242-3","DOIUrl":null,"url":null,"abstract":"<p>We prove that the parallel transport of a flat <span>\\(n-1\\)</span>-gerbe on any given target space gives rise to an <i>n</i>-dimensional extended homotopy quantum field theory. In case the target space is the classifying space of a finite group, we provide explicit formulae for this homotopy quantum field theory in terms of transgression. Moreover, we use the geometric theory of orbifolds to give a dimension-independent version of twisted and equivariant Dijkgraaf–Witten models. Finally, we introduce twisted equivariant Dijkgraaf–Witten theories giving us in the 3-2-1-dimensional case a new class of equivariant modular tensor categories which can be understood as twisted versions of the equivariant modular categories constructed by Maier, Nikolaus and Schweigert.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"15 1","pages":"113 - 142"},"PeriodicalIF":0.5000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-019-00242-3","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-019-00242-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We prove that the parallel transport of a flat \(n-1\)-gerbe on any given target space gives rise to an n-dimensional extended homotopy quantum field theory. In case the target space is the classifying space of a finite group, we provide explicit formulae for this homotopy quantum field theory in terms of transgression. Moreover, we use the geometric theory of orbifolds to give a dimension-independent version of twisted and equivariant Dijkgraaf–Witten models. Finally, we introduce twisted equivariant Dijkgraaf–Witten theories giving us in the 3-2-1-dimensional case a new class of equivariant modular tensor categories which can be understood as twisted versions of the equivariant modular categories constructed by Maier, Nikolaus and Schweigert.

Abstract Image

作为扩展同伦量子场论的高平面格布的平行输运
我们证明了平面\(n-1\) -gerbe在任意给定目标空间上的平行输运可以得到一个n维扩展同伦量子场论。当目标空间是有限群的分类空间时,我们给出了该同伦量子场论的越界的显式公式。此外,我们利用轨道的几何理论给出了扭曲等变Dijkgraaf-Witten模型的一个与维无关的版本。最后,我们引入了扭曲等变Dijkgraaf-Witten理论,在3-2-3 -1维的情况下,我们得到了一类新的等变模张量范畴,它们可以被理解为Maier, Nikolaus和Schweigert构造的等变模范畴的扭曲版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信