{"title":"Extended Annihilating-Ideal Graph of a Commutative Ring","authors":"S. Nithya, G. Elavarasi","doi":"10.7151/dmgaa.1390","DOIUrl":null,"url":null,"abstract":"Abstract Let R be a commutative ring with identity. An ideal I of a ring R is called an annihilating-ideal if there exists a nonzero ideal J of R such that IJ = (0) and we use the notation 𝔸(R) for the set of all annihilating-ideals of R. In this paper, we introduce the extended annihilating-ideal graph of R, denoted by 𝔼𝔸𝔾(R). It is the simple graph with vertices 𝔸(R)* = 𝔸(R)\\ {(0)}, and two distinct vertices I and J are adjacent whenever there exist two positive integers n and m such that InJm = (0) with In ≠ (0) and Jm ≠ (0). Here we discuss in detail the diameter and girth of 𝔼𝔸𝔾(R) and investigate the coincidence of 𝔼𝔸𝔾(R) with the annihilating-ideal graph 𝔸𝔾 (R). Moreover we propose open questions in this paper.","PeriodicalId":36816,"journal":{"name":"Discussiones Mathematicae - General Algebra and Applications","volume":"42 1","pages":"279 - 291"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae - General Algebra and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7151/dmgaa.1390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Let R be a commutative ring with identity. An ideal I of a ring R is called an annihilating-ideal if there exists a nonzero ideal J of R such that IJ = (0) and we use the notation 𝔸(R) for the set of all annihilating-ideals of R. In this paper, we introduce the extended annihilating-ideal graph of R, denoted by 𝔼𝔸𝔾(R). It is the simple graph with vertices 𝔸(R)* = 𝔸(R)\ {(0)}, and two distinct vertices I and J are adjacent whenever there exist two positive integers n and m such that InJm = (0) with In ≠ (0) and Jm ≠ (0). Here we discuss in detail the diameter and girth of 𝔼𝔸𝔾(R) and investigate the coincidence of 𝔼𝔸𝔾(R) with the annihilating-ideal graph 𝔸𝔾 (R). Moreover we propose open questions in this paper.