A Method for Modeling Acoustic Waves in Moving Subdomains

IF 1.3 Q3 ACOUSTICS
Milan Brankovic, M. Everett
{"title":"A Method for Modeling Acoustic Waves in Moving Subdomains","authors":"Milan Brankovic, M. Everett","doi":"10.3390/acoustics4020024","DOIUrl":null,"url":null,"abstract":"Forward modeling plays a key role in both the creation of predictive models and the study of the surrounding environment through inversion methods. Due to their competitive computational cost and modest algorithmic complexity, finite difference methods (FDM) are commonly used to model the acoustic wave equation. An algorithm has been developed to decrease the computational cost of acoustic-wave forward modeling that can be applied to most finite difference methods. An important feature of the algorithm is the calculation, at each time step, of the pressure in only a moving subdomain which contains the grid points across which waves are passing. The computation is skipped at grid points at which the waves are negligibly small or non-existent. The novelty in this work comes from flexibility of the subdomain and its ability to closely follow the developing wavefield. To demonstrate the efficacy of the algorithm, it is applied to a standard finite difference scheme and validated against 2-D modeling results. The algorithm herein can play an important role in the reduction in computation time of seismic data analysis as the volumes of seismic data increase due to developments in data acquisition technology.","PeriodicalId":72045,"journal":{"name":"Acoustics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/acoustics4020024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Forward modeling plays a key role in both the creation of predictive models and the study of the surrounding environment through inversion methods. Due to their competitive computational cost and modest algorithmic complexity, finite difference methods (FDM) are commonly used to model the acoustic wave equation. An algorithm has been developed to decrease the computational cost of acoustic-wave forward modeling that can be applied to most finite difference methods. An important feature of the algorithm is the calculation, at each time step, of the pressure in only a moving subdomain which contains the grid points across which waves are passing. The computation is skipped at grid points at which the waves are negligibly small or non-existent. The novelty in this work comes from flexibility of the subdomain and its ability to closely follow the developing wavefield. To demonstrate the efficacy of the algorithm, it is applied to a standard finite difference scheme and validated against 2-D modeling results. The algorithm herein can play an important role in the reduction in computation time of seismic data analysis as the volumes of seismic data increase due to developments in data acquisition technology.
一种运动子域中声波的建模方法
正向建模在预测模型的创建和通过反演方法研究周围环境方面都发挥着关键作用。由于具有竞争力的计算成本和适度的算法复杂性,有限差分法(FDM)通常用于对声波方程进行建模。已经开发了一种算法来降低声波正演建模的计算成本,该算法可以应用于大多数有限差分方法。该算法的一个重要特征是,在每个时间步长,只计算移动子域中的压力,该子域包含波浪经过的网格点。在波浪小到可以忽略不计或不存在的网格点处跳过计算。这项工作的新颖性来自子域的灵活性及其密切跟踪发展中的波场的能力。为了证明该算法的有效性,将其应用于标准有限差分格式,并根据二维建模结果进行了验证。随着数据采集技术的发展,地震数据量的增加,本文的算法可以在减少地震数据分析的计算时间方面发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信