Data-Driven Distributionally Robust Optimization over Time

Kevin-Martin Aigner, Andreas Bärmann, Kristin Braun, F. Liers, S. Pokutta, Oskar Schneider, Kartikey Sharma, Sebastian Tschuppik
{"title":"Data-Driven Distributionally Robust Optimization over Time","authors":"Kevin-Martin Aigner, Andreas Bärmann, Kristin Braun, F. Liers, S. Pokutta, Oskar Schneider, Kartikey Sharma, Sebastian Tschuppik","doi":"10.1287/ijoo.2023.0091","DOIUrl":null,"url":null,"abstract":"Stochastic optimization (SO) is a classical approach for optimization under uncertainty that typically requires knowledge about the probability distribution of uncertain parameters. Because the latter is often unknown, distributionally robust optimization (DRO) provides a strong alternative that determines the best guaranteed solution over a set of distributions (ambiguity set). In this work, we present an approach for DRO over time that uses online learning and scenario observations arriving as a data stream to learn more about the uncertainty. Our robust solutions adapt over time and reduce the cost of protection with shrinking ambiguity. For various kinds of ambiguity sets, the robust solutions converge to the SO solution. Our algorithm achieves the optimization and learning goals without solving the DRO problem exactly at any step. We also provide a regret bound for the quality of the online strategy that converges at a rate of [Formula: see text], where T is the number of iterations. Furthermore, we illustrate the effectiveness of our procedure by numerical experiments on mixed-integer optimization instances from popular benchmark libraries and give practical examples stemming from telecommunications and routing. Our algorithm is able to solve the DRO over time problem significantly faster than standard reformulations. Funding: This work was supported by Deutsche Forschungsgemeinschaft (DFG): Projects B06 and B10 in CRC TRR 154 and Project-ID 416229255 - SFB 1411 and Federal Ministry for Economic Affairs and Energy, Germany [Grant 03EI1036A]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/ijoo.2023.0091 .","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/ijoo.2023.0091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Stochastic optimization (SO) is a classical approach for optimization under uncertainty that typically requires knowledge about the probability distribution of uncertain parameters. Because the latter is often unknown, distributionally robust optimization (DRO) provides a strong alternative that determines the best guaranteed solution over a set of distributions (ambiguity set). In this work, we present an approach for DRO over time that uses online learning and scenario observations arriving as a data stream to learn more about the uncertainty. Our robust solutions adapt over time and reduce the cost of protection with shrinking ambiguity. For various kinds of ambiguity sets, the robust solutions converge to the SO solution. Our algorithm achieves the optimization and learning goals without solving the DRO problem exactly at any step. We also provide a regret bound for the quality of the online strategy that converges at a rate of [Formula: see text], where T is the number of iterations. Furthermore, we illustrate the effectiveness of our procedure by numerical experiments on mixed-integer optimization instances from popular benchmark libraries and give practical examples stemming from telecommunications and routing. Our algorithm is able to solve the DRO over time problem significantly faster than standard reformulations. Funding: This work was supported by Deutsche Forschungsgemeinschaft (DFG): Projects B06 and B10 in CRC TRR 154 and Project-ID 416229255 - SFB 1411 and Federal Ministry for Economic Affairs and Energy, Germany [Grant 03EI1036A]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/ijoo.2023.0091 .
随时间变化的数据驱动分布式鲁棒优化
随机优化(SO)是一种在不确定条件下进行优化的经典方法,通常需要了解不确定参数的概率分布。由于后者通常是未知的,分布式鲁棒优化(DRO)提供了一个强大的替代方案,可以确定一组分布(模糊集)上的最佳保证解。在这项工作中,我们提出了一种随时间变化的DRO方法,该方法使用在线学习和作为数据流到达的场景观察来了解更多关于不确定性的信息。我们强大的解决方案会随着时间的推移进行调整,并在减少模糊性的情况下降低保护成本。对于各种模糊集,鲁棒解收敛到SO解。我们的算法实现了优化和学习目标,而不需要在任何步骤精确地解决DRO问题。我们还为在线策略的质量提供了一个遗憾界,该策略以[公式:见正文]的速率收敛,其中T是迭代次数。此外,我们通过对来自流行基准库的混合整数优化实例的数值实验来说明我们的过程的有效性,并给出了来自电信和路由的实际例子。我们的算法能够比标准公式更快地解决DRO随时间变化的问题。资金:这项工作得到了德国政府(DFG)的支持:CRC TRR 154中的B06和B10项目以及项目ID 416229255-SFB 1411和德国联邦经济事务和能源部【拨款03EI1036A】。补充材料:电子公司可在https://doi.org/10.1287/ijoo.2023.0091。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信