Extended Jacobi elliptic function solutions for general boussinesq systems

IF 1.2 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Sait San
{"title":"Extended Jacobi elliptic function solutions for general boussinesq systems","authors":"Sait San","doi":"10.31349/revmexfis.69.021401","DOIUrl":null,"url":null,"abstract":"In this research paper, we have utilized the Jacobi elliptic function expansion method to obtain the exact solutions of (1+1)- dimensional Boussinesq System (GBQS). The most important difference that distinguishes this method from other methods is the parameters included in the auxiliary equation F’ (ξ) =  Ö P F4(ξ) + QF2(ξ) + R. As far as the authors know, there is no other study in which such a variety of solutions has been given. Depending on P, Q and R, nineteen the solitary wave and periodic wave solutions are obtained at their limit conditions. In addition, 3D and contour plot graphics for the constructed waves are investigated with the computer package program by giving special values to the parameters involved. The validity and reliability of the method is examined by its applications on a class of nonlinear evolution equations of special interest in nonlinear mathematical physics. The results were acquired to verify that the recommended method is applicable and reliable for the analytic treatment of a wide application of nonlinear phenomena","PeriodicalId":21538,"journal":{"name":"Revista Mexicana De Fisica","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana De Fisica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.31349/revmexfis.69.021401","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

In this research paper, we have utilized the Jacobi elliptic function expansion method to obtain the exact solutions of (1+1)- dimensional Boussinesq System (GBQS). The most important difference that distinguishes this method from other methods is the parameters included in the auxiliary equation F’ (ξ) =  Ö P F4(ξ) + QF2(ξ) + R. As far as the authors know, there is no other study in which such a variety of solutions has been given. Depending on P, Q and R, nineteen the solitary wave and periodic wave solutions are obtained at their limit conditions. In addition, 3D and contour plot graphics for the constructed waves are investigated with the computer package program by giving special values to the parameters involved. The validity and reliability of the method is examined by its applications on a class of nonlinear evolution equations of special interest in nonlinear mathematical physics. The results were acquired to verify that the recommended method is applicable and reliable for the analytic treatment of a wide application of nonlinear phenomena
一般bussinesq系统的扩展Jacobi椭圆函数解
本文利用Jacobi椭圆函数展开方法得到了(1+1)维Boussinesq系统(GBQS)的精确解。该方法与其他方法的最重要区别在于辅助方程F'(ξ)=ÖP F4(ξ。根据P、Q和R,在它们的极限条件下得到了孤立波和周期波的解。此外,通过对所涉及的参数给出特殊值,用计算机程序包研究了构造波的三维和等值线图。通过将该方法应用于非线性数学物理中一类特别感兴趣的非线性演化方程,验证了该方法的有效性和可靠性。结果验证了所推荐的方法对广泛应用的非线性现象的分析处理是适用的和可靠的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista Mexicana De Fisica
Revista Mexicana De Fisica 物理-物理:综合
CiteScore
2.20
自引率
11.80%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Durante los últimos años, los responsables de la Revista Mexicana de Física, la Revista Mexicana de Física E y la Revista Mexicana de Física S, hemos realizado esfuerzos para fortalecer la presencia de estas publicaciones en nuestra página Web ( http://rmf.smf.mx).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信