{"title":"On secondary subhypermodules","authors":"F. Farzalipour, P. Ghiasvand","doi":"10.22124/JART.2021.18981.1256","DOIUrl":null,"url":null,"abstract":"Let $R$ be a Krasner hyperring and $M$ be an $R$- hypermodule. Let $psi: S^{h}(M)rightarrow S^{h}(M)cup {emptyset}$ be a function, where $S^{h}(M)$ denote the set of all subhypermodules of $M$. In the first part of this paper, we introduce the concept of a secondary hypermodule over a Krasner hyperring. A non-zero hypermodule $M$ over a Krasner hyperring $R$ is called secondary if for every $rin R$, $rM=M$ or $r^{n}M=0$ for some positive integer $n$. Then we investigate some basic properties of secondary hypermodules. Second, we introduce the notion of $psi$-secondary subhypermodules of an $R$-hypermodule and we obtain some properties of such subhypermodules.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"9 1","pages":"143-158"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2021.18981.1256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Let $R$ be a Krasner hyperring and $M$ be an $R$- hypermodule. Let $psi: S^{h}(M)rightarrow S^{h}(M)cup {emptyset}$ be a function, where $S^{h}(M)$ denote the set of all subhypermodules of $M$. In the first part of this paper, we introduce the concept of a secondary hypermodule over a Krasner hyperring. A non-zero hypermodule $M$ over a Krasner hyperring $R$ is called secondary if for every $rin R$, $rM=M$ or $r^{n}M=0$ for some positive integer $n$. Then we investigate some basic properties of secondary hypermodules. Second, we introduce the notion of $psi$-secondary subhypermodules of an $R$-hypermodule and we obtain some properties of such subhypermodules.