On secondary subhypermodules

Q4 Mathematics
F. Farzalipour, P. Ghiasvand
{"title":"On secondary subhypermodules","authors":"F. Farzalipour, P. Ghiasvand","doi":"10.22124/JART.2021.18981.1256","DOIUrl":null,"url":null,"abstract":"‎Let $R$ be a Krasner hyperring and $M$ be an $R$- hypermodule. Let $psi: S^{h}(M)rightarrow S^{h}(M)cup {emptyset}$ be a function, where $S^{h}(M)$ denote the set of all subhypermodules of $M$.  In the first part of this paper, we introduce the concept of a secondary hypermodule over a Krasner hyperring. A non-zero hypermodule $M$ over a Krasner hyperring $R$ is called secondary if for every $rin R$, $rM=M$ or $r^{n}M=0$ for some positive integer $n$. Then we investigate some basic properties of secondary hypermodules. Second,  we introduce the notion of $psi$-secondary subhypermodules of an $R$-hypermodule and we obtain some properties of such subhypermodules.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"9 1","pages":"143-158"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2021.18981.1256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

‎Let $R$ be a Krasner hyperring and $M$ be an $R$- hypermodule. Let $psi: S^{h}(M)rightarrow S^{h}(M)cup {emptyset}$ be a function, where $S^{h}(M)$ denote the set of all subhypermodules of $M$.  In the first part of this paper, we introduce the concept of a secondary hypermodule over a Krasner hyperring. A non-zero hypermodule $M$ over a Krasner hyperring $R$ is called secondary if for every $rin R$, $rM=M$ or $r^{n}M=0$ for some positive integer $n$. Then we investigate some basic properties of secondary hypermodules. Second,  we introduce the notion of $psi$-secondary subhypermodules of an $R$-hypermodule and we obtain some properties of such subhypermodules.
在二级子超模块上
假设$R$是一个Krasner超环,$M$是一个$R$-超模。设$psi: S^{h}(M)右移S^{h}(M)cup {emptyset}$是一个函数,其中$S^{h}(M)$表示$M$的所有子超模的集合。在本文的第一部分中,我们引入了Krasner超环上的次超模的概念。Krasner超环$R$上的非零超模$M$被称为次级模,如果对于每一个$rin R$, $rM=M$或$R ^{n}M=0$对于某个正整数$n$。然后研究了次超模的一些基本性质。其次,我们引入了$R$超模的$psi$-次子超模的概念,并得到了这些子超模的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra and Related Topics
Journal of Algebra and Related Topics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信