Discrimination of Multiclass Motor Imagery-Based Brain-Computer Interface

Rania Elsadig Elmahdi, Samer Elhag, Abubaker Abdalmunim, Abdelslam Abdelrsoul, Z. A. Mustafa, B. A. Ibraheem
{"title":"Discrimination of Multiclass Motor Imagery-Based Brain-Computer Interface","authors":"Rania Elsadig Elmahdi, Samer Elhag, Abubaker Abdalmunim, Abdelslam Abdelrsoul, Z. A. Mustafa, B. A. Ibraheem","doi":"10.1097/JCE.0000000000000548","DOIUrl":null,"url":null,"abstract":"Motor imagery (MI) based on electroencephalography (EEG) is one of the methods that the brain-computer interface (BCI) system uses to identify the expected behavior through brain signals. In this study, we aimed to develop an algorithm that is capable of differentiating between 4 MI movements. To achieve this, the Data Set IIa A from BCI competition IV was used to test the algorithm. We used independent component analysis (ICA) to preprocess the signal and wavelet technique to decompose the obtained signal into the desired frequency bands. We then inserted these as common spatial pattern (CSP) input, maximizing the variance between 2 classes using the 1-versus-1 (OVO) technique. Afterward, the support vector machine (SVM) classifier is used to obtain the best possible separation between the 2 classes. The obtained result shows improvement in some significant subjects compared with a previous study of these techniques.","PeriodicalId":77198,"journal":{"name":"Journal of clinical engineering","volume":"47 1","pages":"201 - 206"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/JCE.0000000000000548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motor imagery (MI) based on electroencephalography (EEG) is one of the methods that the brain-computer interface (BCI) system uses to identify the expected behavior through brain signals. In this study, we aimed to develop an algorithm that is capable of differentiating between 4 MI movements. To achieve this, the Data Set IIa A from BCI competition IV was used to test the algorithm. We used independent component analysis (ICA) to preprocess the signal and wavelet technique to decompose the obtained signal into the desired frequency bands. We then inserted these as common spatial pattern (CSP) input, maximizing the variance between 2 classes using the 1-versus-1 (OVO) technique. Afterward, the support vector machine (SVM) classifier is used to obtain the best possible separation between the 2 classes. The obtained result shows improvement in some significant subjects compared with a previous study of these techniques.
基于多类运动图像的脑机接口识别
基于脑电图(EEG)的运动图像(MI)是脑机接口(BCI)系统通过脑信号识别预期行为的方法之一。在这项研究中,我们旨在开发一种能够区分4 MI运动的算法。为了实现这一点,使用来自BCI竞赛IV的数据集IIa A来测试该算法。我们使用独立分量分析(ICA)对信号进行预处理,并使用小波技术将获得的信号分解为所需的频带。然后,我们将这些作为公共空间模式(CSP)输入插入,使用1-versus-1(OVO)技术最大化2个类别之间的方差。然后,使用支持向量机(SVM)分类器来获得两个类之间的最佳分离。所获得的结果显示,与之前对这些技术的研究相比,一些重要的受试者有所改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信