{"title":"Residue expansions and saddlepoint approximations in stochastic models using the analytic continuation of generating functions","authors":"R. Butler","doi":"10.1080/15326349.2022.2114496","DOIUrl":null,"url":null,"abstract":"Abstract Asymptotic residue expansions are proposed for inverting probability generating functions (PGFs) and approximating their associated mass and survival functions. The expansions are useful in the wide range of stochastic model applications in which a PGF admits poles in its analytic continuation. The error of such an expansion is a contour integral in the analytic continuation and saddlepoint approximations are developed for such errors using the method of steepest descents. These saddlepoint error estimates attain sufficient accuracy that they can be used to set the order of the expansion so it achieves a specified error. Numerical applications include a success run tutorial example, the discrete ruin model, the Pollaczek-Khintchine formula, and passage times for semi-Markov processes. The residue expansions apply more generally for inverting generating functions which arise in renewal theory and combinatorics and lead to a simple proof of the classic renewal theorem. They extend even further for determining Taylor coefficients of general meromorphic functions.","PeriodicalId":21970,"journal":{"name":"Stochastic Models","volume":"39 1","pages":"469 - 501"},"PeriodicalIF":0.5000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/15326349.2022.2114496","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Asymptotic residue expansions are proposed for inverting probability generating functions (PGFs) and approximating their associated mass and survival functions. The expansions are useful in the wide range of stochastic model applications in which a PGF admits poles in its analytic continuation. The error of such an expansion is a contour integral in the analytic continuation and saddlepoint approximations are developed for such errors using the method of steepest descents. These saddlepoint error estimates attain sufficient accuracy that they can be used to set the order of the expansion so it achieves a specified error. Numerical applications include a success run tutorial example, the discrete ruin model, the Pollaczek-Khintchine formula, and passage times for semi-Markov processes. The residue expansions apply more generally for inverting generating functions which arise in renewal theory and combinatorics and lead to a simple proof of the classic renewal theorem. They extend even further for determining Taylor coefficients of general meromorphic functions.
期刊介绍:
Stochastic Models publishes papers discussing the theory and applications of probability as they arise in the modeling of phenomena in the natural sciences, social sciences and technology. It presents novel contributions to mathematical theory, using structural, analytical, algorithmic or experimental approaches. In an interdisciplinary context, it discusses practical applications of stochastic models to diverse areas such as biology, computer science, telecommunications modeling, inventories and dams, reliability, storage, queueing theory, mathematical finance and operations research.