Performance Enhancement of Elephant Herding Optimization Algorithm Using Modified Update Operators

Abdul-Fatawu Seini Yussif, Elvis Twumasi, E. Frimpong
{"title":"Performance Enhancement of Elephant Herding Optimization Algorithm Using Modified Update Operators","authors":"Abdul-Fatawu Seini Yussif, Elvis Twumasi, E. Frimpong","doi":"10.25077/jnte.v12n2.1124.2023","DOIUrl":null,"url":null,"abstract":"This research paper presents a modified version of the Elephant Herding Optimization (EHO) algorithm, referred to as the Modified Elephant Herding Optimization (MEHO) algorithm, to enhance its global performance. The focus of this study lies in improving the balance between exploration and exploitation within the algorithm through the modification of two key operators: the matriarch updating operator and the separation updating operator. By reframing the equations governing these operators, the proposed modifications aim to enhance the algorithm’s ability to discover optimal global solutions. The MEHO algorithm is implemented in the MATLAB environment, utilizing MATLAB R2019a. To assess its efficacy, the algorithm is subjected to rigorous testing on various standard benchmark functions. Comparative evaluations are conducted against the original EHO algorithm, as well as other established optimization algorithms, namely the Improved Elephant Herding Optimization (IEHO) algorithm, Particle Swarm Optimization (PSO) algorithm, and Biogeography-Based Optimization (BBO) algorithm. The evaluation metrics primarily focus on the algorithms’ capacity to produce the best global solution for the tested functions. The proposed MEHO algorithm outperformed the other algorithms on 75% of the tested functions, and 62.5% under two specific test scenarios. The findings highlight the effectiveness of the proposed modification in enhancing the global performance of the Elephant Herding Optimization algorithm. Overall, this work contributes to the field of optimization algorithms by presenting a refined version of the EHO algorithm that exhibits improved global search capabilities.","PeriodicalId":30660,"journal":{"name":"Jurnal Nasional Teknik Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jnte.v12n2.1124.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research paper presents a modified version of the Elephant Herding Optimization (EHO) algorithm, referred to as the Modified Elephant Herding Optimization (MEHO) algorithm, to enhance its global performance. The focus of this study lies in improving the balance between exploration and exploitation within the algorithm through the modification of two key operators: the matriarch updating operator and the separation updating operator. By reframing the equations governing these operators, the proposed modifications aim to enhance the algorithm’s ability to discover optimal global solutions. The MEHO algorithm is implemented in the MATLAB environment, utilizing MATLAB R2019a. To assess its efficacy, the algorithm is subjected to rigorous testing on various standard benchmark functions. Comparative evaluations are conducted against the original EHO algorithm, as well as other established optimization algorithms, namely the Improved Elephant Herding Optimization (IEHO) algorithm, Particle Swarm Optimization (PSO) algorithm, and Biogeography-Based Optimization (BBO) algorithm. The evaluation metrics primarily focus on the algorithms’ capacity to produce the best global solution for the tested functions. The proposed MEHO algorithm outperformed the other algorithms on 75% of the tested functions, and 62.5% under two specific test scenarios. The findings highlight the effectiveness of the proposed modification in enhancing the global performance of the Elephant Herding Optimization algorithm. Overall, this work contributes to the field of optimization algorithms by presenting a refined version of the EHO algorithm that exhibits improved global search capabilities.
利用改进的更新算子提高大象群优化算法的性能
本文提出了一种改进版的大象群优化(EHO)算法,称为改进型大象群优化算法(MEHO),以提高其全局性能。本研究的重点在于通过修改两个关键算子:矩阵更新算子和分离更新算子,提高算法中探索和开发之间的平衡。通过重新构建控制这些算子的方程,所提出的修改旨在增强算法发现最优全局解的能力。MEHO算法是利用MATLAB R2019a在MATLAB环境中实现的。为了评估其有效性,该算法在各种标准基准函数上进行了严格的测试。与原始EHO算法以及其他已建立的优化算法,即改进的大象群优化(IEHO)算法、粒子群优化(PSO)算法和基于生物地理的优化(BBO)算法进行了比较评估。评估指标主要关注算法为测试函数生成最佳全局解决方案的能力。所提出的MEHO算法在75%的测试函数上优于其他算法,在两个特定的测试场景下优于62.5%。研究结果强调了所提出的修改在提高大象群优化算法的全局性能方面的有效性。总的来说,这项工作通过提出EHO算法的改进版本,展示了改进的全局搜索能力,为优化算法领域做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信