{"title":"Lyapunov exponents for transfer operator cocycles of metastable maps: A quarantine approach","authors":"C. Gonz'alez-Tokman, A. Quas","doi":"10.1090/mosc/313","DOIUrl":null,"url":null,"abstract":"<p>This works investigates the Lyapunov–Oseledets spectrum of transfer operator cocycles associated to one-dimensional random <italic>paired tent maps</italic> depending on a parameter <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon\">\n <mml:semantics>\n <mml:mi>ε<!-- ε --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\varepsilon</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, quantifying the strength of the <italic>leakage</italic> between two nearly invariant regions. We show that the system exhibits metastability, and identify the second Lyapunov exponent <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda 2 Superscript epsilon\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>2</mml:mn>\n <mml:mi>ε<!-- ε --></mml:mi>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">\\lambda _2^\\varepsilon</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> within an error of order <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon squared StartAbsoluteValue log epsilon EndAbsoluteValue\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>ε<!-- ε --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>log</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mi>ε<!-- ε --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\varepsilon ^2|\\log \\varepsilon |</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This approximation agrees with the naive prediction provided by a time-dependent two-state Markov chain. Furthermore, it is shown that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda 1 Superscript epsilon Baseline equals 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>1</mml:mn>\n <mml:mi>ε<!-- ε --></mml:mi>\n </mml:msubsup>\n <mml:mo>=</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lambda _1^\\varepsilon =0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda 2 Superscript epsilon\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>2</mml:mn>\n <mml:mi>ε<!-- ε --></mml:mi>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">\\lambda _2^\\varepsilon</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are simple, and the only exceptional Lyapunov exponents of magnitude greater than <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"minus log 2 plus upper O left-parenthesis log log StartFraction 1 Over epsilon EndFraction slash log StartFraction 1 Over epsilon EndFraction right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>log</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo>+</mml:mo>\n <mml:mi>O</mml:mi>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.623em\" minsize=\"1.623em\">(</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mi>log</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mi>log</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mi>ε<!-- ε --></mml:mi>\n </mml:mfrac>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\" maxsize=\"1.2em\" minsize=\"1.2em\">/</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mi>log</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mi>ε<!-- ε --></mml:mi>\n </mml:mfrac>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.623em\" minsize=\"1.623em\">)</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">-\\log 2+ O\\Big (\\log \\log \\frac 1\\varepsilon \\big /\\log \\frac 1\\varepsilon \\Big )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mosc/313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
This works investigates the Lyapunov–Oseledets spectrum of transfer operator cocycles associated to one-dimensional random paired tent maps depending on a parameter ε\varepsilon, quantifying the strength of the leakage between two nearly invariant regions. We show that the system exhibits metastability, and identify the second Lyapunov exponent λ2ε\lambda _2^\varepsilon within an error of order ε2|logε|\varepsilon ^2|\log \varepsilon |. This approximation agrees with the naive prediction provided by a time-dependent two-state Markov chain. Furthermore, it is shown that λ1ε=0\lambda _1^\varepsilon =0 and λ2ε\lambda _2^\varepsilon are simple, and the only exceptional Lyapunov exponents of magnitude greater than −log2+O(loglog1ε/log1ε)-\log 2+ O\Big (\log \log \frac 1\varepsilon \big /\log \frac 1\varepsilon \Big ).