Real-estate price prediction with deep neural network and principal component analysis

IF 1.6 Q3 MANAGEMENT
F. Mostofi, V. Toğan, H. B. Başağa
{"title":"Real-estate price prediction with deep neural network and principal component analysis","authors":"F. Mostofi, V. Toğan, H. B. Başağa","doi":"10.2478/otmcj-2022-0016","DOIUrl":null,"url":null,"abstract":"Abstract Despite the wide application of deep neural networks (DNN) models, their application over small-sized real-estate price prediction is limited due to the reduced prediction accuracy and the high-dimensionality of the dataset. This study motivates small-sized real-estate agencies to take DNN-driven decisions using the available local dataset. To improve the high-dimensionality of real-estate price datasets and thus enhance the price-prediction accuracy of a DNN model, this paper adopts principal component analysis (PCA). The PCA benefits in improving the prediction accuracy of a DNN model are threefold: dimensionality reduction, dataset transformation and localisation of influential price features. The results indicate that, through the PCA-DNN model, the transformed dataset achieves higher accuracy (90%–95%) and better generalisation ability compared with other benchmark price predictors. The spatial and building age proved to have the most impact in determining the overall real-estate price. The application of PCA not only reduces the high-dimensionality of the dataset but also enhances the quality of the encoded feature attributes. The model is beneficial in real-estate and construction applications, where the absence of medium and big datasets decreases the price-prediction accuracy.","PeriodicalId":42309,"journal":{"name":"Organization Technology and Management in Construction","volume":"14 1","pages":"2741 - 2759"},"PeriodicalIF":1.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organization Technology and Management in Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/otmcj-2022-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Despite the wide application of deep neural networks (DNN) models, their application over small-sized real-estate price prediction is limited due to the reduced prediction accuracy and the high-dimensionality of the dataset. This study motivates small-sized real-estate agencies to take DNN-driven decisions using the available local dataset. To improve the high-dimensionality of real-estate price datasets and thus enhance the price-prediction accuracy of a DNN model, this paper adopts principal component analysis (PCA). The PCA benefits in improving the prediction accuracy of a DNN model are threefold: dimensionality reduction, dataset transformation and localisation of influential price features. The results indicate that, through the PCA-DNN model, the transformed dataset achieves higher accuracy (90%–95%) and better generalisation ability compared with other benchmark price predictors. The spatial and building age proved to have the most impact in determining the overall real-estate price. The application of PCA not only reduces the high-dimensionality of the dataset but also enhances the quality of the encoded feature attributes. The model is beneficial in real-estate and construction applications, where the absence of medium and big datasets decreases the price-prediction accuracy.
基于深度神经网络和主成分分析的房地产价格预测
摘要尽管深度神经网络(DNN)模型应用广泛,但由于预测精度低和数据集维数高,其在小型房地产价格预测中的应用受到限制。这项研究促使小型房地产中介机构利用可用的本地数据集做出DNN驱动的决策。为了提高房地产价格数据集的高维性,从而提高DNN模型的价格预测精度,本文采用了主成分分析(PCA)。PCA在提高DNN模型预测精度方面有三个好处:降维、数据集转换和有影响力的价格特征的本地化。结果表明,通过PCA-DNN模型,与其他基准价格预测因子相比,转换后的数据集实现了更高的准确性(90%-95%)和更好的泛化能力。事实证明,空间和建筑年代对决定整体房地产价格的影响最大。PCA的应用不仅降低了数据集的高维性,而且提高了编码特征属性的质量。该模型在房地产和建筑应用中是有益的,因为缺乏中大型数据集会降低价格预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信