Sensen Chu, Liang Cheng, J. Cheng, Xuedong Zhang, Jin-Ming Liu
{"title":"Comparison of Six Empirical Methods for Multispectral Satellite-derived Bathymetry","authors":"Sensen Chu, Liang Cheng, J. Cheng, Xuedong Zhang, Jin-Ming Liu","doi":"10.1080/01490419.2022.2132327","DOIUrl":null,"url":null,"abstract":"Abstract Satellite-derived bathymetry (SDB), an important technology in marine geodesy, is advantageous because of its wide coverage, low cost, and short revisit cycle. At present, several different kinds of SDB methods exist, and their inversion accuracy is affected by algorithm performance, band selection, and sample distribution, among other factors. But these factors have not been adequately quantified and compared. In the present study, we evaluate the performances and highlight the best scenarios for applying the six classical empirical methods including the log-transformed single band, band ratio (BR), Lyzenga polynomial (LP), support vector regression, third-order polynomial (TOP), and back propagation (BP) neural network. The results reveal that the number of training samples is important for the empirical SDB methods, and the TOP and BP methods need more training samples than other methods. Compared to the robust BR and LP methods, the TOP and BP methods can obtain high accuracy but are severely influenced by incomplete samples. In addition, experiments that prove the local minimum (poor robustness) problem of the BP method exist and cannot be ignored in the bathymetry field. The present study highlights the most suitable method for obtaining reliable SDB results and their applicability.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/01490419.2022.2132327","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Satellite-derived bathymetry (SDB), an important technology in marine geodesy, is advantageous because of its wide coverage, low cost, and short revisit cycle. At present, several different kinds of SDB methods exist, and their inversion accuracy is affected by algorithm performance, band selection, and sample distribution, among other factors. But these factors have not been adequately quantified and compared. In the present study, we evaluate the performances and highlight the best scenarios for applying the six classical empirical methods including the log-transformed single band, band ratio (BR), Lyzenga polynomial (LP), support vector regression, third-order polynomial (TOP), and back propagation (BP) neural network. The results reveal that the number of training samples is important for the empirical SDB methods, and the TOP and BP methods need more training samples than other methods. Compared to the robust BR and LP methods, the TOP and BP methods can obtain high accuracy but are severely influenced by incomplete samples. In addition, experiments that prove the local minimum (poor robustness) problem of the BP method exist and cannot be ignored in the bathymetry field. The present study highlights the most suitable method for obtaining reliable SDB results and their applicability.
期刊介绍:
The aim of Marine Geodesy is to stimulate progress in ocean surveys, mapping, and remote sensing by promoting problem-oriented research in the marine and coastal environment.
The journal will consider articles on the following topics:
topography and mapping;
satellite altimetry;
bathymetry;
positioning;
precise navigation;
boundary demarcation and determination;
tsunamis;
plate/tectonics;
geoid determination;
hydrographic and oceanographic observations;
acoustics and space instrumentation;
ground truth;
system calibration and validation;
geographic information systems.