Poincaré polynomials of a map and a relative Hilali conjecture

IF 0.7 Q2 MATHEMATICS
Toshihiro Yamaguchi, Shoji Yokura
{"title":"Poincaré polynomials of a map and a relative Hilali conjecture","authors":"Toshihiro Yamaguchi, Shoji Yokura","doi":"10.32513/tbilisi/1608606048","DOIUrl":null,"url":null,"abstract":"In this paper we introduce homological and homotopical Poincare polynomials $P_f(t)$ and $P^{\\pi}_f(t)$ of a continuous map $f:X \\to Y$ such that if $f:X \\to Y$ is a constant map, or more generally, if $Y$ is contractible, then these Poincare polynomials are respectively equal to the usual homological and homotopical Poincare polynomials $P_X(t)$ and $P^{\\pi}_X(t)$ of the source space $X$. Our relative Hilali conjecture $P^{\\pi}_f(1) \\leqq P_f(1)$ is a map version of the the well-known Hilali conjecture $P^{\\pi}_X(1) \\leqq P_X(1)$ of a rationally elliptic space X. In this paper we show that under the condition that $H_i(f;\\mathbb Q):H_i(X;\\mathbb Q) \\to H_i(Y;\\mathbb Q)$ is not injective for some $i>0$, the relative Hilali conjecture of product of maps holds, namely, there exists a positive integer $n_0$ such that for $\\forall n \\geqq n_0$ the \\emph{strict inequality $P^{\\pi}_{f^n}(1) < P_{f^n}(1)$} holds, where $f^n:X^n \\to Y^n$. In the final section we pose a question whether a \"Hilali\"-type inequality $HP^{\\pi}_X(r_X) \\leqq P_X(r_X)$ holds for a rationally hyperbolic space $X$, provided the the homotopical Hilbert--Poincare series $HP^{\\pi}_X(r_X)$ converges at the radius $r_X$ of convergence.","PeriodicalId":43977,"journal":{"name":"Tbilisi Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tbilisi Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32513/tbilisi/1608606048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we introduce homological and homotopical Poincare polynomials $P_f(t)$ and $P^{\pi}_f(t)$ of a continuous map $f:X \to Y$ such that if $f:X \to Y$ is a constant map, or more generally, if $Y$ is contractible, then these Poincare polynomials are respectively equal to the usual homological and homotopical Poincare polynomials $P_X(t)$ and $P^{\pi}_X(t)$ of the source space $X$. Our relative Hilali conjecture $P^{\pi}_f(1) \leqq P_f(1)$ is a map version of the the well-known Hilali conjecture $P^{\pi}_X(1) \leqq P_X(1)$ of a rationally elliptic space X. In this paper we show that under the condition that $H_i(f;\mathbb Q):H_i(X;\mathbb Q) \to H_i(Y;\mathbb Q)$ is not injective for some $i>0$, the relative Hilali conjecture of product of maps holds, namely, there exists a positive integer $n_0$ such that for $\forall n \geqq n_0$ the \emph{strict inequality $P^{\pi}_{f^n}(1) < P_{f^n}(1)$} holds, where $f^n:X^n \to Y^n$. In the final section we pose a question whether a "Hilali"-type inequality $HP^{\pi}_X(r_X) \leqq P_X(r_X)$ holds for a rationally hyperbolic space $X$, provided the the homotopical Hilbert--Poincare series $HP^{\pi}_X(r_X)$ converges at the radius $r_X$ of convergence.
映射的庞加莱多项式和相对的Hilali猜想
在本文中,我们引入了连续映射$f:X\toY$的同调和同调庞加莱多项式$P_f(t)$和$P^{\pi}_f(t)$f,使得如果$f:X\toY$f是常数映射,或者更一般地说,如果$Y$是可压缩的,那么这些庞加莱多项式分别等于源空间$X$的常用同调和同源庞加莱多边形$P_X(t)美元和$P^{\pi}_X(t。我们的相对Hilali猜想$P^{\pi}_f(1)\leqq P_f(1)$是有理椭圆空间X的著名Hilali猜测$P^}_X(1)\leq P_X(1,存在一个正整数$n_0$,使得对于$\所有n\ geqq n_0$的emph{严格不等式$P^{\pi}_{f^n}(1)<P_{f^ n}。在最后一节中,我们提出了一个“Hilali”型不等式$HP^{\pi}_X(r_X)\leqq P_X(r_X)$对于有理双曲空间$X$是否成立的问题,前提是同调Hilbert-Poincare级数$HP^{\pi}_X(r_X)$收敛于收敛半径$r_X$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信