Well-posedness and qualitative analysis of a SEIR model with spatial diffusion for COVID-19 spreading

Q2 Agricultural and Biological Sciences
José Paulo Carvalho dos Santos, Evandro Monteiro, J. C. Ferreira, Nelson Henrique Teixeira Lemes, D. S. Rodrigues
{"title":"Well-posedness and qualitative analysis of a SEIR model with spatial diffusion for COVID-19 spreading","authors":"José Paulo Carvalho dos Santos, Evandro Monteiro, J. C. Ferreira, Nelson Henrique Teixeira Lemes, D. S. Rodrigues","doi":"10.55630/j.biomath.2023.07.207","DOIUrl":null,"url":null,"abstract":"In this paper, we study the well-posedness and the qualitative behavior of equilibria of a SEIR epidemic models with spatial diffusion for the spreading of COVID-19. The well-posedness of the model is proved using both the Semigroup Theory of sectorial operators and existence results for abstract parabolic differential equations. The asymptotical local stability of both disease-free and endemic equilibria are established using standard linearization theory, and confirmed by illustrative numerical simulations. The asymptotical global stability of both disease-free and endemic equilibria are established using a Lyapunov function.","PeriodicalId":52247,"journal":{"name":"Biomath","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55630/j.biomath.2023.07.207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the well-posedness and the qualitative behavior of equilibria of a SEIR epidemic models with spatial diffusion for the spreading of COVID-19. The well-posedness of the model is proved using both the Semigroup Theory of sectorial operators and existence results for abstract parabolic differential equations. The asymptotical local stability of both disease-free and endemic equilibria are established using standard linearization theory, and confirmed by illustrative numerical simulations. The asymptotical global stability of both disease-free and endemic equilibria are established using a Lyapunov function.
新冠肺炎传播的空间扩散SEIR模型的良好性和定性分析
本文研究了具有空间扩散的新型冠状病毒(COVID-19)的SEIR流行病模型平衡点的适定性和定性行为。利用扇形算子的半群理论和抽象抛物型微分方程的存在性证明了该模型的适定性。利用标准线性化理论建立了无病平衡点和地方病平衡点的渐近局部稳定性,并通过说明性数值模拟加以证实。利用Lyapunov函数建立了无病平衡点和地方性平衡点的渐近全局稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomath
Biomath Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
6
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信