Algebraicity of critical values of triple product L-functions in the balanced case

Pub Date : 2021-08-04 DOI:10.2140/pjm.2022.321.73
Shih-Yu Chen
{"title":"Algebraicity of critical values of triple product\nL-functions in the balanced case","authors":"Shih-Yu Chen","doi":"10.2140/pjm.2022.321.73","DOIUrl":null,"url":null,"abstract":"The algebraicity of critical values of triple product $L$-functions in the balanced case was proved by Garrett and Harris, under the assumption that the critical points are on the right and away from center of the critical strip. The missing right-half critical points correspond to certain holomorphic Eisenstein series outside the range of absolute convergence. The remaining difficulties are construction of these holomorphic Eisenstein series and verification of the non-vanishing of the corresponding non-archimedean local zeta integrals. In this paper, we address these problems and complement the result of Garrett and Harris to all critical points. As a consequence, we obtain new cases of Deligne's conjecture for symmetric cube $L$-functions of Hilbert modular forms.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.321.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The algebraicity of critical values of triple product $L$-functions in the balanced case was proved by Garrett and Harris, under the assumption that the critical points are on the right and away from center of the critical strip. The missing right-half critical points correspond to certain holomorphic Eisenstein series outside the range of absolute convergence. The remaining difficulties are construction of these holomorphic Eisenstein series and verification of the non-vanishing of the corresponding non-archimedean local zeta integrals. In this paper, we address these problems and complement the result of Garrett and Harris to all critical points. As a consequence, we obtain new cases of Deligne's conjecture for symmetric cube $L$-functions of Hilbert modular forms.
分享
查看原文
平衡情况下三重积函数临界值的代数性
Garrett和Harris在假设临界点在临界带的右边且远离中心的情况下,证明了平衡情况下三积函数的临界值的代数性。缺失的右半临界点对应于绝对收敛范围外的某些全纯爱森斯坦级数。剩下的困难是构造这些全纯爱森斯坦级数和验证相应的非阿基米德局部zeta积分的不灭性。在本文中,我们解决了这些问题,并将Garrett和Harris的结果补充到所有临界点。因此,我们得到了Hilbert模形式的对称立方L函数的Deligne猜想的新情形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信