{"title":"Influence of carbon nanotubes on the dissipation of disturbances in a magnetic fluid layer","authors":"","doi":"10.22364/mhd.57.2.10","DOIUrl":null,"url":null,"abstract":"In this paper, processes of dissipation of disturbances of pressure and velocity in a magnetic fluid layer are experimentally studied. It is shown that the introduction of multi-layer carbon nanotubes (MCNT) up to 2wt.% into a magnetic fluid substantially increases the dissipation of disturbances due to increasing viscous friction and elastic properties of multilayer carbon nanotubes. Figs 9, Refs 9.","PeriodicalId":18136,"journal":{"name":"Magnetohydrodynamics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetohydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22364/mhd.57.2.10","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, processes of dissipation of disturbances of pressure and velocity in a magnetic fluid layer are experimentally studied. It is shown that the introduction of multi-layer carbon nanotubes (MCNT) up to 2wt.% into a magnetic fluid substantially increases the dissipation of disturbances due to increasing viscous friction and elastic properties of multilayer carbon nanotubes. Figs 9, Refs 9.